[1] GARCIA V,BIBES M. Electronics: inside story of ferroelectric memories[J]. Nature,2012,483(7389): 279-281. [2] LIAO L,FAN H J,YAN B,et al. Ferroelectric transistors with nanowire channel: toward nonvolatile memory applications[J]. Acs Nano,2009,3(3): 700-706. [3] CHOI T,LEE S,CHOI Y J,et al. Switchable ferroelectric diode and photovoltaic effect in BiFeO3[J]. Science,2009, 324(5923): 63-66. [4] JAMIL A,KALKUR T S,CRAMER N. Tunable ferroelectric capacitor-based voltage-controlled oscillator[J]. IEEE Transactions on Ultrasonics,Ferroelectrics,and Frequency Control,2007,54(2): 222-226. [5] BENEDEK N A,FENNIE C J. Why are there so few perovskite ferroelectrics?[J]. The Journal of Physical Chemistry C,2013,117(26): 13339-13349. [6] FENNIE C J. Ferroelectrically induced weak ferromagnetism by design[J]. Physical Review Letters,2008,100(16): 167203-1-167203-4. [7] CURTAROLO S,HART G L W,NARDELLI M B,et al. The high-throughput highway to computational materials design[J]. Nature Materials,2013,12(3): 191-201. [8] BENEDEK N A,FENNIE C J. Hybrid improper ferroelectricity: a mechanism for controllable polarization-magnetization coupling[J]. Physical Review Letters,2011,106(10): 107204-1-107204-4. [9] HARRIS A B. Symmetry analysis for the Ruddlesden-Popper systems Ca3Mn2O7 and Ca3Ti2O7[J]. Physical Review B,2011,84(6): 49-51. [10] OH Y S,LUO X,HUANG F T,et al. Experimental demonstration of hybrid improper ferroelectricity and the presence of abundant charged walls in (Ca,Sr)3Ti2O7 crystals[J]. Nature Materials,2015,14(4): 407-413. [11] LIU X Q,WU J W,SHI X X,et al. Hybrid improper ferroelectricity in Ruddlesden-Popper Ca3(Ti,Mn)2O7 ceramics[J]. Applied Physics Letters,2015,106(20): 202903-1-202903-4. [12] RUDDLESDEN S N,POPPER P. New compounds of the K2NiF4 type[J]. Acta Crystallographica,1957,10(8): 538-539. [13] GREEN M A,PRASSIDES K,DAY P,et al. Structure of the n=2 and n=∞ member of the Ruddlesden-Popper series,Srn+1SnnO3n+1[J]. International Journal of Inorganic Materials,2000,2(1):35-41. [14] BOUSQUET E,DAWBER M,STUCKI N,et al. Improper ferroelectricity in perovskite oxide artificial superlattices[J]. Nature,2008,452(7188): 732-736. [15] MULDER A T,BENEDEK N A,RONDINELLI J M,et al. Turning ABO3,antiferroelectrics into ferroelectrics: design rules for practical rotation-driven ferroelectricity in double perovskites and A3B2O7,ruddlesden-popper compounds[J]. Advanced Functional Materials,2013,23(38):4810-4820. [16] LEI B F,MAN S Q,LIU Y L,et al. Luminescence properties of Sm3+- doped Sr3Sn2O7 phosphor[J]. Materials Chemistry & Physics,2010,124(Suppl. 2/3):912-915. [17] 曲远方. 功能陶瓷材料[M]. 北京:化学工业出版社,2003: 28-66. [18] SCOTT J F,DAWBER M. Oxygen-vacancy ordering as a fatigue mechanism in perovskite ferroelectrics[J]. Applied Physics Letters,2000,76(25): 3801-3803. [19] CHEN A,ZHI Y,CROSS L E. Oxygen-vacancy-related low-frequency dielectric relaxation and electrical conduction in Bi:SrTiO3[J]. Physical Review B,2000,62(1):228-236. [20] WARREN W L,VANHEUSDEN K,DIMOS D,et al. Oxygen vacancy motion in perovskite oxides[J]. Journal of the American Ceramic Society,1996,79(2):536-538.
[1]骆建国,朱 蒙,龙春艳,等.Sr1-x(YK)0.25xBa0.5xBi4Ti4O15陶瓷的制备及其介电性研究[J].武汉工程大学学报,2018,40(03):288.[doi:10. 3969/j. issn. 1674?2869. 2018. 03. 011]
LUO Jianguo,ZHU Meng,LONG Chunyan,et al.Preparation and Dielectric Properties of Sr1-x(YK)0.25xBa0.5xBi4Ti4O15 Ceramics[J].Journal of Wuhan Institute of Technology,2018,40(03):288.[doi:10. 3969/j. issn. 1674?2869. 2018. 03. 011]