|本期目录/Table of Contents|

[1]江满星,赵彤洲*,吴泽俊.基于目标形状卷积神经网络在舰船分类中的应用[J].武汉工程大学学报,2020,42(02):213-217.[doi:10.19843/j.cnki.CN42-1779/TQ.201911022]
 JIANG Manxing,ZHAO Tongzhou*,WU Zejun.Application of Convolution Neural Network Based on Target Shape in Ships and Warships Classification[J].Journal of Wuhan Institute of Technology,2020,42(02):213-217.[doi:10.19843/j.cnki.CN42-1779/TQ.201911022]
点击复制

基于目标形状卷积神经网络在舰船分类中的应用(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
42
期数:
2020年02期
页码:
213-217
栏目:
机电与信息工程
出版日期:
2021-01-26

文章信息/Info

Title:
Application of Convolution Neural Network Based on Target Shape in Ships and Warships Classification
文章编号:
1674 - 2869(2020)02 - 0213 - 06
作者:
江满星赵彤洲*吴泽俊
武汉工程大学计算机科学与工程学院,湖北 武汉 430205
Author(s):
JIANG Manxing ZHAO Tongzhou* WU Zejun
School of Computer Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
关键词:
卷积神经网络目标几何形状特征提取目标识别舰船
Keywords:
convolution neural networktarget geometry featurefeature extractiontarget recognitionships and warship
分类号:
TP391.4
DOI:
10.19843/j.cnki.CN42-1779/TQ.201911022
文献标志码:
A
摘要:
针对传统卷积神经网络采用通用卷积核提取目标特征造成更高的时间和空间开销的问题,提出一种适应目标几何形状的卷积核结构以替代通用卷积核,可使单个卷积核充分提取目标特征,简化目标提取过程,减少冗余计算。实验以网上收集的舰船可见光图像数据集为研究对象,实验结果表明:本方法在舰船目标识别任务中达到了99.7%的分类准确率,与目前通用的分类模型进行对比要高出约1%,训练速度是通用模型中收敛速度最快的模型的3倍。
Abstract:
The traditional convolution neural network uses general convolution kernel to extract target features, which results in significant time and space overhead. In this paper, a convolution kernel structure suitable for target geometry was proposed to replace the general convolution kernel, which can make a single convolution kernel extract more comprehensive target features. Additionally, it can simplify target extraction process and reduce redundant calculation. The experiment takes the visible image data set collected from the internet of ships and warships as the research object. The experimental results show that the method achieves a classification accuracy of 99.7% in the ships and warships target recognition task, which is about 1% higher than that of existing general classification models, while the training speed of our model is 3 times faster than that of state-of-the-art general models.

参考文献/References:

[1] LECUN Y, BOTTOU L,BENGIO Y, et al. Gradient- based learning applied to document decognition[J]. Proceedings of the IEEE,1998,86(11):2278-2324. [2] KRIZHEVSKY A, SUTSKEVER I ,HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM,2017, 60(6):84-90. [3] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. Advances in Neual Information Processing Systems,2012,25(2): 223-225. [4] REN S Q, HE K M,GIRSHICK R,et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(6):1137-1149. [5] REDON J, DIVVALA S, GIESHICK R, et al. You only look once: unified, real-time object detection[C]// Proceedings of the IEEE Conference on computer vision and pattern recognition. New York:IEEE,2016:779-788. [6] HE K M, ZHANG X Y, REN S Q,et al. Deep residual learning for image recognition[C]// Computer Vision and Pattern Recognition. New York: IEEE, 2016:770-778. [7] 蒋冲宇,鲁统伟,闵峰,等. 基于神经网络的发票文字检测与识别方法[J]. 武汉工程大学学报,2019,41(6):586-590. [8] 熊寒颖,鲁统伟,闵峰,等. 基于单一神经网络的实时人脸检测[J]. 武汉工程大学学报,2019,41(5):489-493. [9] 姜健涛. 基于深度学习的人脸识别技术研究[D]. 哈尔滨:哈尔滨工业大学,2019. [10] 徐梓涵,刘军,张苏沛,等. 一种基于MobileNet的火灾烟雾检测方法[J]. 武汉工程大学学报,2019,41(6):580-585. [11] 王楠. 基于深度学习的舰船检测识别[D]. 哈尔滨:哈尔滨工业大学,2019. [12] 周瑶. 基于深度学习的舰船目标检测与识别[D]. 哈尔滨:哈尔滨工程大学,2018. [13] 张怡晨. 基于卷积神经网络的舰船检测研究[D]. 厦门:厦门大学,2018. [14] 岳丹丹. 基于多神经网络分类器的目标识别[J]. 舰船科学技术, 2015(4):173-176. [15] 赵亮,王晓峰,袁逸涛. 基于深度卷积神经网络的船舶识别方法研究[J]. 舰船科学技术,2016,38( 15) :119-123. [16] Hearst M A, Dumais S T, Osuna E, et al. Support vector machines[J]. IEEE Intelligent Systems and their applications, 1998, 13(4): 18-28. [17] 张迪飞,张金锁,姚克明,等. 基于SVM分类的红外舰船目标识别[J]. 红外与激光工程,2016,45(1):179-184. [18] 刘峰,沈同圣,马新星. 特征融合的卷积神经网络多波段舰船目标识别[J]. 光学学报,2017,37(10):248-256. [19] 吴建宝,肖诗斌,王焕鹏. 改进的神经网络算法在舰船目标识别上的应用[J]. 北京信息科技大学学报(自然科学版),2019,34(3):94-98. [20] SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. New York:IEEE,2015:1-9.

相似文献/References:

[1]汪家明,卢 涛*.多尺度残差深度神经网络的卫星图像超分辨率算法[J].武汉工程大学学报,2018,40(04):440.[doi:10. 3969/j. issn. 1674?2869. 2018. 04. 018]
 WANG Jiaming,LU Tao *. Satellite Imagery Super-Resolution Algorithm via Multi-Scale Residual Deep Neural Network[J].Journal of Wuhan Institute of Technology,2018,40(02):440.[doi:10. 3969/j. issn. 1674?2869. 2018. 04. 018]
[2]张苏沛,刘 军*,肖澳文,等.基于卷积神经网络的验证码识别[J].武汉工程大学学报,2019,(01):89.[doi:10. 3969/j. issn. 1674?2869. 2019. 01. 015]
 ZHANG Supei,LIU Jun*,XIAO Aowen,et al.CAPTCHA Recognition Based on Convolutional Neural Network[J].Journal of Wuhan Institute of Technology,2019,(02):89.[doi:10. 3969/j. issn. 1674?2869. 2019. 01. 015]
[3]肖澳文,刘 军*,张苏沛,等.基于CNN的三维人体姿态估计方法[J].武汉工程大学学报,2019,(02):168.[doi:10. 3969/j. issn. 1674?2869. 2019. 02. 013]
 XIAO Aowen,LIU Jun*,ZHANG Supei,et al.Three-Dimensional Human Pose Estimation Based on Convolution Neural Network[J].Journal of Wuhan Institute of Technology,2019,(02):168.[doi:10. 3969/j. issn. 1674?2869. 2019. 02. 013]
[4]陈希彤,卢 涛*.基于全局深度分离卷积残差网络的高效人脸识别算法[J].武汉工程大学学报,2019,(03):276.[doi:10. 3969/j. issn. 1674-2869. 2019. 03. 014]
 CHEN Xitong,LU Tao *.Efficient Face Recognition Algorithm Using Global Deep Separable Convolutional and Residual Network[J].Journal of Wuhan Institute of Technology,2019,(02):276.[doi:10. 3969/j. issn. 1674-2869. 2019. 03. 014]
[5]王丽亚,刘昌辉*,蔡敦波,等.基于CNN-BiLSTM网络引入注意力模型的文本情感分析[J].武汉工程大学学报,2019,(04):386.[doi:10. 3969/j. issn. 1674?2869. 2019. 04. 016]
 WANG Liya,LIU Changhui*,CAI Dunbo,et al.Text Sentiment Analysis Based on CNN-BiLSTM Network and Attention Model[J].Journal of Wuhan Institute of Technology,2019,(02):386.[doi:10. 3969/j. issn. 1674?2869. 2019. 04. 016]
[6]熊寒颖,鲁统伟*,闵 峰,等.基于单一神经网络的实时人脸检测[J].武汉工程大学学报,2019,(05):489.[doi:10. 3969/j. issn. 1674?2869. 2019. 05. 015]
 XIONG Hanying,LU Tongwei*,MIN Feng,et al.Real-Time Face Detection Based on Single Neural Network[J].Journal of Wuhan Institute of Technology,2019,(02):489.[doi:10. 3969/j. issn. 1674?2869. 2019. 05. 015]
[7]杜梦星,王彦伟*.基于CNN的突发事件预警系统的设计与实现[J].武汉工程大学学报,2020,42(02):207.[doi:10.19843/j.cnki.CN42-1779/TQ.201910016]
 DU Mengxing,WANG Yanwei*.Design and Implementation of Emergency Warning System Based on Convolution Neural Network[J].Journal of Wuhan Institute of Technology,2020,42(02):207.[doi:10.19843/j.cnki.CN42-1779/TQ.201910016]

备注/Memo

备注/Memo:
收稿日期:2019-11-02基金项目:国家自然科学基金(61601176),武汉研究院开放性课题(IWHS20192031)作者简介:江满星,硕士研究生。E-mail:[email protected]*通讯作者:赵彤洲,博士,副教授。E-mail:[email protected]引文格式:江满星,赵彤洲,吴泽俊.基于目标形状的卷积神经网络在舰船分类中的应用[J]. 武汉工程大学学报,2020,42(2):213-217.
更新日期/Last Update: 2020-06-20