[1] LECUN Y, BOTTOU L,BENGIO Y, et al. Gradient- based learning applied to document decognition[J]. Proceedings of the IEEE,1998,86(11):2278-2324. [2] KRIZHEVSKY A, SUTSKEVER I ,HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM,2017, 60(6):84-90. [3] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. Advances in Neual Information Processing Systems,2012,25(2): 223-225. [4] REN S Q, HE K M,GIRSHICK R,et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(6):1137-1149. [5] REDON J, DIVVALA S, GIESHICK R, et al. You only look once: unified, real-time object detection[C]// Proceedings of the IEEE Conference on computer vision and pattern recognition. New York:IEEE,2016:779-788. [6] HE K M, ZHANG X Y, REN S Q,et al. Deep residual learning for image recognition[C]// Computer Vision and Pattern Recognition. New York: IEEE, 2016:770-778. [7] 蒋冲宇,鲁统伟,闵峰,等. 基于神经网络的发票文字检测与识别方法[J]. 武汉工程大学学报,2019,41(6):586-590. [8] 熊寒颖,鲁统伟,闵峰,等. 基于单一神经网络的实时人脸检测[J]. 武汉工程大学学报,2019,41(5):489-493. [9] 姜健涛. 基于深度学习的人脸识别技术研究[D]. 哈尔滨:哈尔滨工业大学,2019. [10] 徐梓涵,刘军,张苏沛,等. 一种基于MobileNet的火灾烟雾检测方法[J]. 武汉工程大学学报,2019,41(6):580-585. [11] 王楠. 基于深度学习的舰船检测识别[D]. 哈尔滨:哈尔滨工业大学,2019. [12] 周瑶. 基于深度学习的舰船目标检测与识别[D]. 哈尔滨:哈尔滨工程大学,2018. [13] 张怡晨. 基于卷积神经网络的舰船检测研究[D]. 厦门:厦门大学,2018. [14] 岳丹丹. 基于多神经网络分类器的目标识别[J]. 舰船科学技术, 2015(4):173-176. [15] 赵亮,王晓峰,袁逸涛. 基于深度卷积神经网络的船舶识别方法研究[J]. 舰船科学技术,2016,38( 15) :119-123. [16] Hearst M A, Dumais S T, Osuna E, et al. Support vector machines[J]. IEEE Intelligent Systems and their applications, 1998, 13(4): 18-28. [17] 张迪飞,张金锁,姚克明,等. 基于SVM分类的红外舰船目标识别[J]. 红外与激光工程,2016,45(1):179-184. [18] 刘峰,沈同圣,马新星. 特征融合的卷积神经网络多波段舰船目标识别[J]. 光学学报,2017,37(10):248-256. [19] 吴建宝,肖诗斌,王焕鹏. 改进的神经网络算法在舰船目标识别上的应用[J]. 北京信息科技大学学报(自然科学版),2019,34(3):94-98. [20] SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. New York:IEEE,2015:1-9.
[1]汪家明,卢 涛*.多尺度残差深度神经网络的卫星图像超分辨率算法[J].武汉工程大学学报,2018,40(04):440.[doi:10. 3969/j. issn. 1674?2869. 2018. 04. 018]
WANG Jiaming,LU Tao *. Satellite Imagery Super-Resolution Algorithm via Multi-Scale Residual Deep Neural Network[J].Journal of Wuhan Institute of Technology,2018,40(02):440.[doi:10. 3969/j. issn. 1674?2869. 2018. 04. 018]
[2]张苏沛,刘 军*,肖澳文,等.基于卷积神经网络的验证码识别[J].武汉工程大学学报,2019,(01):89.[doi:10. 3969/j. issn. 1674?2869. 2019. 01. 015]
ZHANG Supei,LIU Jun*,XIAO Aowen,et al.CAPTCHA Recognition Based on Convolutional Neural Network[J].Journal of Wuhan Institute of Technology,2019,(02):89.[doi:10. 3969/j. issn. 1674?2869. 2019. 01. 015]
[3]肖澳文,刘 军*,张苏沛,等.基于CNN的三维人体姿态估计方法[J].武汉工程大学学报,2019,(02):168.[doi:10. 3969/j. issn. 1674?2869. 2019. 02. 013]
XIAO Aowen,LIU Jun*,ZHANG Supei,et al.Three-Dimensional Human Pose Estimation Based on Convolution Neural Network[J].Journal of Wuhan Institute of Technology,2019,(02):168.[doi:10. 3969/j. issn. 1674?2869. 2019. 02. 013]
[4]陈希彤,卢 涛*.基于全局深度分离卷积残差网络的高效人脸识别算法[J].武汉工程大学学报,2019,(03):276.[doi:10. 3969/j. issn. 1674-2869. 2019. 03. 014]
CHEN Xitong,LU Tao *.Efficient Face Recognition Algorithm Using Global Deep Separable Convolutional and Residual Network[J].Journal of Wuhan Institute of Technology,2019,(02):276.[doi:10. 3969/j. issn. 1674-2869. 2019. 03. 014]
[5]王丽亚,刘昌辉*,蔡敦波,等.基于CNN-BiLSTM网络引入注意力模型的文本情感分析[J].武汉工程大学学报,2019,(04):386.[doi:10. 3969/j. issn. 1674?2869. 2019. 04. 016]
WANG Liya,LIU Changhui*,CAI Dunbo,et al.Text Sentiment Analysis Based on CNN-BiLSTM Network and Attention Model[J].Journal of Wuhan Institute of Technology,2019,(02):386.[doi:10. 3969/j. issn. 1674?2869. 2019. 04. 016]
[6]熊寒颖,鲁统伟*,闵 峰,等.基于单一神经网络的实时人脸检测[J].武汉工程大学学报,2019,(05):489.[doi:10. 3969/j. issn. 1674?2869. 2019. 05. 015]
XIONG Hanying,LU Tongwei*,MIN Feng,et al.Real-Time Face Detection Based on Single Neural Network[J].Journal of Wuhan Institute of Technology,2019,(02):489.[doi:10. 3969/j. issn. 1674?2869. 2019. 05. 015]
[7]杜梦星,王彦伟*.基于CNN的突发事件预警系统的设计与实现[J].武汉工程大学学报,2020,42(02):207.[doi:10.19843/j.cnki.CN42-1779/TQ.201910016]
DU Mengxing,WANG Yanwei*.Design and Implementation of Emergency Warning System Based on Convolution Neural Network[J].Journal of Wuhan Institute of Technology,2020,42(02):207.[doi:10.19843/j.cnki.CN42-1779/TQ.201910016]