|本期目录/Table of Contents|

[1]吴锦胜,杨昌炎,王 伟,等.介孔碳负载金属催化剂对纤维素热裂解反应的影响[J].武汉工程大学学报,2020,42(03):264-271.[doi:10.19843/j.cnki.CN42-1779/TQ. 201907001]
 WU Jinsheng,YANG Changyan,WANG Wei,et al.Effect of Mesoporous Carbon Supported Metal Catalysts on Cellulose Pyrolysis[J].Journal of Wuhan Institute of Technology,2020,42(03):264-271.[doi:10.19843/j.cnki.CN42-1779/TQ. 201907001]
点击复制

介孔碳负载金属催化剂对纤维素热裂解反应的影响(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
42
期数:
2020年03期
页码:
264-271
栏目:
化学与化学工程
出版日期:
2023-03-14

文章信息/Info

Title:
Effect of Mesoporous Carbon Supported Metal Catalysts on Cellulose Pyrolysis
文章编号:
1674 - 2869(2020)03 - 0264 - 08
作者:
吴锦胜1杨昌炎12王 伟1杨 姝1邱 琦3丁一刚1张 波*1
1. 绿色化工过程教育部重点实验室(武汉工程大学),湖北 武汉 430205;2. 催化材料制备及应用湖北省重点实验室(黄冈师范学院),湖北 黄冈 438000;3. 深圳大学化学与环境工程学院,广东 深圳 518060
Author(s):
WU Jinsheng 1 YANG Changyan1 2 WANG Wei 1 YANG Shu 1 QIU Qi3 DING Yigang1ZHANG Bo *1
1. Key Laboratory of Green Chemical Process (Wuhan Institute of Technology),Ministry of Education, Wuhan 430205, China;2. Hubei Key Laboratory for Processing and Application of Catalytic Materials(Huanggang Normal College),Huanggang 438000,China; 3. College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
关键词:
介孔碳固体碱催化剂热裂解纤维素糠醛
Keywords:
mesoporous carbon solid base catalyst pyrolysis cellulose furfural
分类号:
TQ352.2
DOI:
10.19843/j.cnki.CN42-1779/TQ. 201907001
文献标志码:
A
摘要:
为了研究介孔碳负载金属催化剂对纤维素热裂解反应的影响,分别采用三元组装法和浸渍法制备介孔碳(MC)和负载型金属催化剂NaOH/MC、K2CO3/MC和AlCl3/MC,使用气体吸附法(BET)和扫描电子显微镜-能谱表征催化剂,通过热裂解-气相色谱质谱联用(Py-GC/MS)来研究介孔碳负载金属催化剂对纤维素热裂解产品分布的影响。结果表明:催化剂具有比表面积839~1 081 m2/g、平均孔径4.76~5.03 nm、孔容0.92~1.14 mL/g。其Na、K和Al负载量分别为0.05%~4.6%、0.06%~12.2%和0.8%~5.6%。3类催化剂皆能有效促进纤维素热降解,使其向小分子产物方向进行。随着碱金属Na和K负载量增加,裂解产物中脱水糖呈降低趋势,产品中羟基乙醛和羟基丙酮的选择性高。当Na负载量为3.5%时,羟基丙酮含量最高达无催化剂条件下的60倍。当使用铝催化剂时,纤维素转化为糠醛,糠醛量为无催化剂条件下9.5倍。与相同负载的微孔活性炭催化剂相比,介孔碳催化剂从金属负载量和催化效果上都明显更优。
Abstract:
To study the effect of mesoporous carbon-supported metal catalysts on cellulose pyrolysis, mesoporous carbon (MC) and MC supported catalysts of NaOH/MC, K2CO3/MC and AlCl3/MC were prepared by ternary assembly and the impregnation method, respectively. Catalysts were characterized by using the Brunauer-Emmett-Teller method and the scanning electron microscopy-energy-dispersive X-ray spectroscopy. The effects of MC supported metal catalysts on the distribution of cellulose pyrolysis products were investigated by using pyrolysis-gas chromatography-mass spectrometry. The results show that the catalysts have specific surface areas of 839-1 081 m2/g, an average pore diameter of 4.76-5.03 nm, and pore volumes of 0.92-1.14 mL/g. The Na, K and Al loadings are 0.05%-4.6%, 0.06%-12.2% and 0.8%-5.6%, respectively. All three types of catalysts can effectively promote the thermal degradation of cellulose to generate small-molecule chemicals. As the loading of alkali metals (Na and K) on MC increases, anhydrosugars in pyrolysis products tend to decrease, and the selectivity of glycolaldehyde and hydroxyacetone is high. When the Na loading is 3.5%, the hydroxyacetone content is 60 times that of the noncatalytic condition. In the pyrolysis reaction catalyzed by AlCl3/MC, celluloseis converted into furfural, and the amount of furfural obtained is 9.5 times that under the noncatalytic condition. Compared with microporous activated carbon supported catalysts, mesoporous carbon supported catalysts are significantly better in both metal loading and catalytic performance.

参考文献/References:

[1] 马隆龙,唐志华,汪丛伟,等. 生物质能研究现状及未来发展策略[J]. 中国科学院院刊,2019,34(4):434-442. [2] ZHANG B,WANG Y. Biomass Processing, Conversion and Biorefinery[M]. New York:Nova Science Publishers,2013. [3] YANG C Y,LI R,ZHANG B,et al. Pyrolysis of microalgae: a critical review[J]. Fuel Processing Technology,2019,186:53-72. [4] YANG C Y,LI R,CUI C,et al. The pyrolysis of duckweed over a solid base catalyst: Py-GC/MS and TGA analysis[J]. Energy Sources,Part A,2017,39(2):177-83. [5] WANG S R,DAI G X,YANG H P,et al. Lignocellulosic biomass pyrolysis mechanism: a state-of-the-art review[J]. Progress in Energy and Combustion Science,2017,62:33-86. [6] 陆强,张栋,朱锡锋. 四种金属氯化物对纤维素快速热解的影响(Ⅱ)机理分析[J]. 化工学报,2010,61(4):1025-1032. [7] 廖艳芬,王树荣,骆仲泱,等. 氯化钙催化纤维素热裂解动力学研究[J]. 燃料化学学报,2005,33(6):692-697. [8] MOCHIZUKI T,ATONG D,CHEN S Y,et al. Effect of SiO2 pore size on catalytic fast pyrolysis of Jatropha residues by using pyrolyzer-GC/MS[J]. Catalysis Communications,2013,36(5):1-4. [9] NOLTE M W,SHANKS B H. A perspective on catalytic strategies for deoxygenation in biomass pyrolysis[J]. Energy Technology,2017,5(1):7-18. [10] 崔畅. 生物质催化转化羟基丙酮及其分离的研究[D]. 武汉:武汉工程大学,2016. [11] 罗海彬,宋志杰,吴锦胜,等. 改性介孔分子筛Zr-MCM-41对纤维素热裂解的影响[J]. 武汉工程大学学报,2019,41(1):40-45. [12] YANG C Y,LI R,QIU Q,et al. Pyrolytic behaviors of scenedesmus obliquus over potassium fluoride on alumina[J]. Fuel,2020, 263:116724. [13] 王凌涛. 功能化介孔碳材料制备及催化性能的实验与分子模拟研究[D]. 天津:天津大学,2014. [14] 刘小娟,于凤文,聂勇等. ZSM-5(38)/Al-MCM-41 复合分子筛对纤维素催化热解的影响[J]. 生物工程学报,2011,27(3):398-403. [15] TAMON H,NAKAGAWA K,SUZUKI T,et al. Improvement of mesoporosity of activated carbons from PET by novel pre-treatment for steam activation[J]. Carbon,1999,37(10):1643-1645. [16] TAMON H,ISHIZAKA H,ARAKI T,et al. Control of mesoporous structure of organic and carbon aerogels[J]. Carbon,1998,36(9):1257-1262. [17] RYOO R,JOO S H,JUN S. Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation[J]. The Journal of Physical Chemistry B,1999,103(37):7743-7746. [18] SHEN D K,GU S. The mechanism for thermal decomposition of cellulose and its main products[J]. Bioresource Technology,2009,100(24):6496-6504.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2019-07-02基金项目:武汉工程大学研究生教育创新基金(CX2016104)作者简介:吴锦胜,硕士研究生。E-mail:[email protected]*通讯作者:张 波,博士,教授。E-mail:[email protected]引文格式:吴锦胜,杨昌炎,王伟,等. 介孔碳负载金属催化剂对纤维素热裂解反应的影响[J]. 武汉工程大学学报,2020,42(3):264-271.
更新日期/Last Update: 2020-07-09