[1] 侯明,衣宝廉. 燃料电池技术发展现状与展望[J]. 电化学,2012,18(1):1-13. [2] TAHIR M,PAN L,IDREES F, et al. Electrocatalytic oxygen evolution reaction for energy conversion and storage:a comprehensive review [J]. Nano Energy,2017,37:136-157. [3] REIER T,OEZASLAN M,STRASSER P. Electrocatalytic oxygen evolution reaction (OER) on Ru,Ir,and Pt catalysts:a comparative study of nanoparticles and bulk materials [J]. ACS Catalysis,2012,2(8):1765-1772. [4] SAGU J S,MEHTA D,WIJAYANTHA K G U,et al. Electrocatalytic activity of CoFe2O4 thin films prepared by AACVD towards the oxygen evolution reaction in alkaline media [J]. Electrochemistry Communications,2018,87:1-4. [5] CUI X J,REN P J,DENG D H,et al. Single layer graphene encapsulating non-precious metals as high- performance electrocatalysts for water oxidation [J]. Energy & Environmental Science,2016,9(1):123-129. [6] 陈琳琳. 碳基非贵金属复合催化剂的制备及其电催化析氢性能研究[D]. 镇江:江苏大学,2018. [7] ZHU C Z,WEN D,LEUBNER S,et al. Nickel cobalt oxide hollow nanosponges as advanced electrocatalysts for the oxygen evolution reaction [J]. Chemical Communications,2015,51(37):7851-7854. [8] BAI X,LIU Q,ZHANG H S,et al. Nickel-cobalt layered double hydroxide nanowires on three dimensional graphene nickel foam for high performance asymmetric supercapacitors [J]. Electrochimica Acta,2016,215:492-499. [9] GONG X F ,CHENG J P, LIU F, et al. Nickel-cobalt hydroxide microspheres electrodepositioned on nickel cobaltite nanowires grown on Ni foam for high- performance pseudocapacitors [J]. Journal of Power Sources,2014,267:610-616. [10] LI X C, WANG L, SHI J H,et al. Multishelled nickel- cobalt oxide hollow microspheres with optimized compositions and shell porosity for high-performance pseudocapacitors[J]. ACS Applied Materials & Interfaces,2016,8(27):17276-17283. [11] CABO M,PELLICER E,ROSSINYOL E,et al. Mesoporous NiCo2O4 spinel:influence of calcination temperature over phase purity and thermal stability [J]. Crystal Growth & Design,2009,9(11):4814-4821. [12] ABDI F F,ROEL V D K. Nature and light dependence of bulk recombination in Co-Pi-catalyzed BiVO4 photoanodes [J]. The Journal of Physical Chemistry C,2012,116(17):9398-9404. [13] WANG Y, LIU Q, HU T J, et al. Carbon supported MnO2-CoFe2O4 with enhanced electrocatalytic activity for oxygen reduction and oxygen evolution [J]. Applied Surface Science,2017,403:51-56. [14] 周琦,李志洋,郑斌. 纳米多孔双金属氧化物NiCo2O4的制备及其电化学性能[J]. 无机化学学报,2018,34(6):1103-1109. [15] THIELE E W. Relation between catalytic activity and size of particle [J]. Industrial & Engineering Chemistry,1939,31(7):916-920. [16] CONSTANTINO V R L, PINNAVAIA T J. Structure- reactivity relationships for basic catalysts derived from a Mg2+/A13+/[CO2-3] layered double hydroxide[J]. Catalysis Letters,1994,23(3/4):361-367. [17] 王岩,王升高,钟艳,等. 静电纺丝制备多孔碳材料及其氧还原催化性能[J]. 武汉工程大学学报,2019,41(4):342-349. [18] XU X,FENG G P,YUAN F. Co nanoparticles decorated on N-doped rGO carbon aerogel as a highly efficient electrocatalyst for oxygen reduction [J]. Functional Materials Letters,2020,13(1):1950090:1-3.[19] ZHU D D,LIU J L,WANG L,et al. A 2D metal- organic framework/Ni(OH)2 heterostructure for an enhanced oxygen evolution reaction [J]. Nanoscale,2019,11(8):3599-3605.