|本期目录/Table of Contents|

[1]陈 凡,刘向宇,姜兴茂,等.粒径可控的TeO2纳米颗粒合成及其抗耐药菌活性研究[J].武汉工程大学学报,2020,42(05):473-477.[doi:10.19843/j.cnki.CN42-1779/TQ.202002019]
 CHEN Fan,LIU Xiangyu,JIANG Xingmao,et al.Controllable Synthesis of TeO2 Nanoparticles and Its Antibacterial Effect on Drug-Resistance Bacteria[J].Journal of Wuhan Institute of Technology,2020,42(05):473-477.[doi:10.19843/j.cnki.CN42-1779/TQ.202002019]
点击复制

粒径可控的TeO2纳米颗粒合成及其抗耐药菌活性研究(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
42
期数:
2020年05期
页码:
473-477
栏目:
化学与化学工程
出版日期:
2021-01-29

文章信息/Info

Title:
Controllable Synthesis of TeO2 Nanoparticles and Its Antibacterial Effect on Drug-Resistance Bacteria
文章编号:
1674 - 2869(2020)05 - 0473 - 05
作者:
陈 凡刘向宇姜兴茂吕 中*
武汉工程大学环境生态与生物工程学院,湖北 武汉 430205
Author(s):
CHEN Fan LIU Xiangyu JIANG Xingmao Lü Zhong*
School of Environmental Ecology and Biological Engineering,Wuhan Institute of Technology,Wuhan 430205,China
关键词:
耐甲氧西林金黄色葡萄球菌气溶胶法TeO2纳米颗粒
Keywords:
methicillin-resistant Staphylococcus aureus aerosol method TeO2 nanoparticle
分类号:
R446.1
DOI:
10.19843/j.cnki.CN42-1779/TQ.202002019
文献标志码:
A
摘要:
临床常见的耐甲氧西林金黄色葡萄球菌(MRSA)给人类健康带来严重的威胁,为抑制该细菌,采用气溶胶法,通过控制不同反应温度合成不同尺寸的TeO2纳米颗粒,以X-射线衍射、扫描电子显微镜对样品的组成和形貌进行表征;通过最小抑菌浓度法(MIC)测定TeO2对临床分离的对多种抗生素具有耐药性MRSA的抗菌活性,此外还与常见抗菌剂纳米银及商用TeO2等进行比较。实验结果显示:合成的TeO2随反应温度升高,粒径变小,从600 nm到30 nm不等;同时,粒径越小,TeO2纳米颗粒对MRSA的抗菌效果增强,粒径为30 nm时,MIC值为8 μg/mL。并且相同质量浓度下,TeO2对MRSA的抗菌活性远高于商用TeO2,略低于纳米银。
Abstract:
Methicillin-resistant Staphylococcus aureus (MRSA) poses a serious threat to human health. To inhibit the bacteria, TeO2 nanoparticles with different sizes were synthesized by an aerosol method at different reaction temperatures, and characterized by X-ray diffraction and scanning electron microscopy. The antimicrobial activity of TeO2 against clinically isolated MRSA, which is resistant to a number of antibiotics, was determined by the minimal antimicrobial concentration (MIC) method. The results show that the particle sizes of TeO2 decrease in the range of 600 nm to 30 nm with the increase of reaction temperature. The smaller the particle size is, the stronger the antibacterial effect of TeO2 nanoparticles against MRSA is. When the particle size is 30 nm, the MIC value is 8 μg/mL. And at the same mass concentration, the antibacterial activity of TeO2 nanoparticles is much higher than that of commercial TeO2 and slightly lower than that of nano-silver.

参考文献/References:

[1] YANG Y, DENG Y Y, HUANG J Y, et al. Size- transformable metal-organic framework-derived nanocarbons for localized chemo-photothermal bacterial ablation and wound disinfection[J]. Advanced Functional Materials,2019,29(33):1900143:1-14. [2] WU B Y, FU J T, ZHOU Y X, et al. Metal-organic framework-based chemo-photothermal combinational system for precise, rapid, and efficient antibacterial therapeutics[J]. Pharmaceutics,2019,11(9):463:1-15. [3] JIANG Q, E F J, TIAN J X, et al. Light-excited antibiotics for potentiating bacterial killing via reactive oxygen species generation[J]. ACS Applied Materials Interfaces, 2020, 12(14): 16150-16158. [4] LAKHUNDI S, ZHANG K Y. Methicillin-resistant Staphylococcus aureus: molecular characterization, evolution, and epidemiology[J]. Clinical Microbiology Reviews, 2018, 31(4): e0002018. [5] PAPADOPOULOS P, PAPADOPOULOS T, ANGELIDIS A S, et al. Prevalence of Staphylococcus aureus and of methicillin-resistant S. aureus (MRSA) along the production chain of dairy products in north-western Greece [J]. Food Microbiol,2018, 69: 43-50. [6] TURNER N A, SHARMA-KUINKEL B K, MASKARINEC S A, et al. Methicillin-resistant Staphylococcus aureus: an overview of basic and clinical research[J]. Nature Reviews Microbiology,2019, 17(4): 203-218. [7] LIU X Y, MA L L, CHEN F, et al. Synergistic antibacterial mechanism of Bi2Te3 nanoparticles combined with the ineffective beta-lactam antibiotic cefotaxime against methicillin-resistant Staphylococcus aureus[J]. Journal of Inorganic Biochemistry,2019, 196: 110687. [8] RAFIQUE M, SADAF I, RAFIQUE M S, et al. A review on green synthesis of silver nanoparticles and their applications[J]. Artificial Cells, Nanomedicine, and Biotechnolog, 2017, 45(7): 1272-1291. [9] ZARE B, NAMI M, SHAHVERDI A R. Tracing tellurium and its nanostructures in biology[J]. Biological Trace Element Research, 2017, 180(2): 171-181. [10] CUNHA R L O R, GOUVEA I E, JULIANO L. A glimpse on biological activities of tellurium compounds[J]. Annals of the Brazilian Academy of Sciences,2009, 81(3): 393-407. [11] SATYA GOPAL RAO P, SIRIPURAM R, SRIPADA S. Impedance analysis of TeO2-SeO2-Li2O nano glass system[J]. Results in Physics, 2019, 13:102133: 1-13. [12] CHOI M S, MIRZAEI A, BANG J H, et al. Incorporation of Pt nanoparticles on the surface of TeO2- branched porous Si nanowire structures for enhanced room-temperature gas sensing[J]. Journal of Nanoscience and Nanotechnology,2019,19(10):6647-6655. [13] CHENG Y R, YANG F, XIANG G L, et al. Ultrathin tellurium oxide/ammonium tungsten bronze nanoribbon for multimodality imaging and second near-infrared region photothermal therapy[J]. Nano Letters, 2019, 19(2): 1179-1189. [14] ZHONG C L, QIN B Y, XIE X Y, et al. Antioxidant and antimicrobial activity of tellurium dioxide nanoparticles sols[J]. Journal of Nano Research,2013, 25: 8-15. [15] QIN B Y, BAI Y, ZHOU Y H, et al. Structure and characterization of TeO2 nanoparticles prepared in acid medium[J]. Materials Letters,2009,63(22): 1949- 1951. [16] PARK S, AN S, KO H, et al. Enhanced ethanol sensing properties of TeO2 nanorods functionalized with Co3O4 nanoparticles[J]. Journal of Nanoscience and Nanotechnology,2015, 15(1): 439-444. [17] VASILEIADIS T, DRACOPOULOS V, KOLLIA M, et al. Laser-assisted growth of t-Te nanotubes and their controlled photo-induced unzipping to ultrathin core-Te/sheath-TeO2 nanowires[J]. Scientific Reports,2013, 3(1): 1209:1-7. [18] NIE P, XU G Y, JIANG J M, et al. Aerosol-spray pyrolysis toward preparation of nanostructured materials for batteries and supercapacitors[J]. Small Methods,2018, 2(2): 1700272:1-24. [19] 姜兴茂, 李亚情, 张涛. 纳米二氧化硅的制备及在生物医学领域的应用[J]. 常州大学学报, 2015, 27(2):39-44. [20] LIANG D H, LU Z, YANG H, et al. Novel asymmetric wettable AgNPs/chitosan wound dressing: in vitro and in vivo evaluation[J]. ACS Applied Materials & Interfaces,2016, 8(6): 3958-3968. [21] JIANG X M, BAO L H, CHENG Y S, et al. Aerosol- assisted synthesis of monodisperse single-crystalline alpha-cristobalite nanospheres[J]. Chemical Communi- cations,2012, 48(9): 1293-1295. [22] LU Z, RONG K F, LI J , et al. Size-dependent antibacterial activities of silver nanoparticles against oral anaerobic pathogenic bacteria[J]. Journal of Materials Science: Materials in Medicine, 2013, 24(6): 1465-1471. [23] ZHANG Y, ZHU P L, LI G, et al. Highly stable and re-dispersible nano Cu hydrosols with sensitively size-dependent catalytic and antibacterial activities[J]. Nanoscale,2015, 7(32): 13775-13783.

相似文献/References:

[1]季 凯,刘清晨,许梓欣,等.气溶胶法制备纳米黑色TiO2颗粒及其光催化降解四环素的研究[J].武汉工程大学学报,2021,43(04):367.[doi:10.19843/j.cnki.CN42-1779/TQ. 202012029]
 JI Kai,LIU Qingchen,XU Zixin,et al.Aerosol Assisted Synthesis of Nano Black TiO2 for Photocatalytic Degradation of Tetracycline[J].Journal of Wuhan Institute of Technology,2021,43(05):367.[doi:10.19843/j.cnki.CN42-1779/TQ. 202012029]
[2]聂 震,季 凯,姜兴茂*.气溶胶法制备纳米Ni@SiO2及其对肉桂醛催化加氢的研究[J].武汉工程大学学报,2024,46(02):125.[doi:10.19843/j.cnki.CN42-1779/TQ.202009006]
 NIE Zhen,JI Kai,JIANG Xingmao*.Aerosol synthesis of nano Ni@SiO2 and its catalytic hydrogenation ofcinnamaldehyde[J].Journal of Wuhan Institute of Technology,2024,46(05):125.[doi:10.19843/j.cnki.CN42-1779/TQ.202009006]

备注/Memo

备注/Memo:
收稿日期:2020-02-27基金项目:国家自然科学基金(21371139);武汉工程大学研究生教育创新基金(CX2018164)作者简介:陈 凡,硕士研究生。E-mail:[email protected]*通讯作者:吕 中,博士,教授,博士研究生导师。E-mail:[email protected]引文格式:陈凡,刘向宇,姜兴茂,等. 粒径可控的TeO2纳米颗粒合成及其抗耐药菌活性研究[J]. 武汉工程大学学报,2020,42(5):473-477.
更新日期/Last Update: 2020-10-30