[1] CECILIA J A, VILARRASA-GARCíAE, GARCíA- SANCHO C,et al. Functionalization of hollow silica microspheres by impregnation or grafted of amine groups for the CO2 capture[J]. International Journalof Greenhouse Gas Control,2016,52: 344-356. [2] WYSOCKA-KRóLK,OLSZTY?SKA-JANUSS,PLESCH G,et al. Nano-silver modified silica particles in antibacterial photodynamic therapy[J]. Applied Surface Science,2018, 461:260-268. [3] BRACHO D, DOUGNAC V N, PALZAH, et al. Functionalization of silica nanoparticles for polypropylene nanocomposite applications[J]. Journal of Nanomaterials,2012:263915:1-8. [4] GAGLIANO-CANDELA R,COLUCCI A P,NAPOLI S. Determination of firing distance. Lead analysis on the target by atomic absorption spectroscopy (AAS)[J]. Journal of Forensic Sciences,2008,53(2): 321-324. [5] PORENTO M, SUTINEN V, JULKU T, et al. Detection of copper in water using on-line plasma-excited atomic absorption spectroscopy (AAS)[J]. Applied Spectroscopy,2011, 65(6): 678-683. [6] AKRAM S, NAJAM R, RIZWANI G H, et al. Determination of heavy metal contents by atomic absorption spectroscopy (AAS) in some medicinal plants from Pakistani and Malaysian origin[J]. Pakistan Journal of Pharmaceutical Sciences,2015,28(5):1781-1787. [7] SILVA D G D,PORTUGAL L A,SERRA A M,et al. Determination of mercury in rice by MSFIA and cold vapour atomic fluorescence spectrometry[J]. Food Chemistry,2013,137(1/2/3/4): 159-163. [8] NIU H, HOUK R S. Fundamental aspects of ion extraction in inductively coupled plasma mass spectrometry[J]. Spectrochimica Acta Part B-atomic Spectroscopy,1996,51(8): 779-815. [9] FRYER B J,JACKSON S E,LONGERICH H P. The application of laser ablation microprobe-inductively coupled plasma-mass spectrometry (LAM-ICP-MS) to in situ (U)Pb geochronology [J]. Chemical Geology,1993, 109(4): 1049-1064. [10] KAWABATA K,INOUE Y,TAKAHASHI H,et al. Determination of arsenic species by inductively coupled plasma mass spectrometry with ion chromatography [J]. Applied Organometallic Chemistry,1994,8(3): 245-248. [11] RADTKE M,REINHOLZ U,GEBHARD R. Synchrotron radiation-induced X-ray fluorescence (SRXRF) analyses of the bernstorf gold[J]. Archaeometry. 2017,59(5):891-899. [12] BROWN J R G E,CATALANO J G,TEMPLETON A S,et al. Environmental interfaces,heavy metals,microbes, and plants applications of XAFS spectroscopy and related synchrotron radiation methods to environmental science [J]. Physica Scripta,2005,115:80-87. [13] 黎俊波,李楠楠,余响林,等. 高选择性铁离子荧光探针的合成及性质研究[J]. 武汉工程大学学报,2010,32(5):11-14. [14] 徐海云,胡春华,刘瑛. 基于二氟化硼-二吡咯甲烷(BODIPY)染料类汞离子荧光探针的研究进展[J]. 应用化工,2012,41(5): 898-902. [15] LEI S,LI Y X,SUN M D,et al. Porphyrin-functionalized Fe3O4@SiO2 core/shell magnetic colorimetric material for detection, adsorption and removal of Hg2+ in aqueous solution[J]. New Journal of Chemistry,2011,35(11): 2697-2704. [16] WANG C, TAO S Y, WEI W, et al. Multifunctional mesoporous material for detection, adsorption and removal of Hg2+ in aqueous solution[J]. Journal of Materials Chemistry,2010,20(22): 4635-4641. [17] SUN W,SUN Q,ZHAO Q,et al. Fluorescent porous silica microspheres for highly and selectively detecting Hg2+ and Pb2+ ions and imaging in living cells[J]. ACS Omega,2019,4(19): 18381-18391. [18] 丛海林,曹维孝. 二氧化硅胶体晶体及其为模板的多孔材料[J]. 高等学校化学学报,2005,26(3): 535-539. [19] 何源,余响林,徐康,等. Janus微球的制备及其性能[J]. 武汉工程大学学报,2016,38(5):419-424. [20] WANG Y,WANG K M,SHEN G L,et al. A selective optical chemical sensor for o-nitrophenol based on fluorescence quenching of curcumin[J]. Talanta,1997,44(7): 1319-1327. [21] 杨丽,徐括喜,王晨娟,等. 基于2,2’-联萘酚衍生物的荧光化学传感器对手性异构体选择性识别研究进展[J]. 有机化学,2013,33(12): 2496-2503. [22] WANG X,ZENG H L,ZHAO L X,et al. A selective optical chemical sensor for 2,6-dinitrophenol based on fluorescence quenching of a novel functional polymer[J]. Talanta,2006,70(1): 160-168. [23] SUN W,CHEN R,CHENG X J,et al. Bodipy-based chemosensors for highly sensitive and selective detection of Hg2+ ions[J]. New Journal of Chemistry,2018,42(23): 19224-19231. [24] JIA Y R,PAN Y,WANG H,et al. Highly selective and sensitive polymers with fluorescent side groups for the detection of Hg2+ ion[J]. Materials Chemistry and Physics,2017,196: 262-269. [25] PENG Z X,LIAO J X,XU Y J,et al. Synthesis and properties of symmetrical donor or acceptor unit conjugate linked BODIPY derivatives[J]. Chemical Journal of Chinese Universities,2015, 36(6): 1094- 1099. [26] PENG C, CHENG X J, CHEN S F, et al. A facile method to prepare monodispersed CdS/SiO2 composite microspheres and investigation on their photocatalytic properties[J]. Photochemistry and Photobiology,2012,88(6):1433-1441[27] 曹红霞,冯晓静,霍冀川. 单分散二氧化硅微球的制备及表面化学修饰[J]. 人工晶体学报,2016,45(8): 2050-2055. [28] 张宝,郭华军,李新海,等. 中间相炭微球的粒径对其结构和性能的影响[J]. 中南大学学报(自然科学版),2005,36(3): 443-447. [29] 刘达,吴彤,张征湃,等. Fe3O4微球的可控制备及在合成气制低碳烯烃中的应用[J]. 石油炼制与化工,2016,47(11):9-13. [30] LI Z,WANG S. Investigation of hollow silica spheres with controllable size and shell thickness[J]. Journal of Inorganic Materials,2011,26(8): 885-891. [31] YE J H, XU J, CHEN H C, et al. A highly sensitive and selective turn-on fluorescent chemodosimeter for Cu2+ based on BODIPY and its application in bioimaging[J]. RSC Advances,2014,4(13): 6691- 6695. [32] 于翠,齐永新,李彦锋,等. 聚苯乙烯系席夫碱螯合树脂的制备及其对Hg(Ⅱ)的吸附性能研究[J]. 离子交换与吸附,2013,29(3):211-219.