[1] ISBERG J,HAMMERSBERG J,JOHANSSON E,et al. High carrier mobility in single-crystal plasma-deposited diamond [J]. Science,2002,297(5587):1670-1672. [2] YU X X, ZHOU J J,WANG Y F, et al. Breakdown enhancement of diamond Schottky barrier diodes using boron implanted edge terminations [J]. Diamond and Related Materials,2019,92:146-149. [3] POMORSKI M,BERDERMANN E,DE BOER W,et al. Charge transport properties of single crystal CVD-diamond particle detectors [J]. Diamond and Related Materials,2007,16(4):1066-1069. [4] MORTET V, DAENEN M, TERAJI T, et al. Characterization of boron doped diamond epilayers grown in a NIRIM type reactor [J]. Diamond and Related Materials,2008,17(7/8/9/10):1330-1334. [5] VOLPE P N, MURET P, PERNOT J, et al. High breakdown voltage Schottky diodes synthesized on p-type CVD diamond layer [J]. Physica Status Solidi (A) Applications and Materials,2010,207(9):2088-2092. [6] VOLPE P N,MURET P,PERNOT J,et al. Extreme dielectric strength in boron doped homoepitaxial diamond [J]. Applied Physics Letters,2010,97(22):223501:1-3 .[7] SUZUKI M,SAKAI T,MAKINO T,et al. Electrical characterization of diamond PiN diodes for high voltage applications [J]. Physica Status Solidi,2013,210(10):2035-2049. [8] BORMASHOV V S, TERENTIEV S A, BUGA S G,et al. Thin large area vertical Schottky barrier diamond diodes with low on-resistance made by ion-beam assisted lift-off technique [J]. Diamond and Related Materials,2017,75:78-84. [9] HATHWAR R, DUTTA M, KOECK F A M, et al. Temperature dependent simulation of diamond depleted Schottky PIN diodes [J]. Journal of Applied Physics,2016,119(22):225703:1-7. [10] UMEZAWA H, TOKUDA N, OGURA M, et al. Characterization of leakage current on diamond Schottky barrier diodes using thermionic-field emission modeling [J]. Diamond and Related Materials,2006,15(11):1949-1953. [11] ZHAO D,LIU Z C,ZHANG X F,et al. Analysis of diamond pseudo-vertical Schottky barrier diode through patterning tungsten growth method [J]. Applied Physics Letters,2018,112(9):092102:1-4. [12] UMEZAWA H,IKEDA K,TATSUMI N,et al. Device scaling of pseudo-vertical diamond power Schottky barrier diodes [J]. Diamond and Related Materials,2009,18(9):1196-1199. [13] CRACIUN M, SABY C, MURET P, et al. A 3.4 eV potential barrier height in Schottky diodes on boron-doped diamond thin films [J]. Diamond and Related Materials,2004,13(2):292-295. [14] UMEZAWA H,SAITO T,TOKUDA N,et al. Leakage current analysis of diamond Schottky barrier diode [J]. Applied Physics Letters,2007,90(7):073506:1-3. [15] TERAJI T,KOIZUMI S,KOIDE Y,et al. Electric field breakdown of lateral Schottky diodes of diamond [J]. Japanese Journal of Applied Physics,2007,46(9):L196-L198. [16] TRAORE A,MURET P,FIORI A,et al. Zr/oxidized diamond interface for high power Schottky diodes [J]. Applied Physics Letters,2014,104(5):052105:1-4. [17] FIORI A, TERAJI T, KOIDE Y. Diamond Schottky diodes with ideality factors close to 1 [J]. Applied Physics Letters,2014,105(13):133515:1-4. [18] UMEZAWA H, IKEDA K, KUMARESAN R,et al. Increase in reverse operation limit by barrier height control of diamond Schottky barrier diode [J]. IEEE Electron Device Letters,2009,30(9):960-962. [19] MURET P R, TRAORé A, MARéCHAL A, et al. Potential barrier heights at metal on oxygen-terminated diamond interfaces [J]. Journal of Applied Physics,2015,118(20):204505:1-21. [20] TERAJI T,LIAO M Y, KOIDE Y. Localized mid- gap-states limited reverse current of diamond Schottky diodes [J]. Journal of Applied Physics,2012,111(10):104503:1-7. [21] UMEZAWA H,SHIKATA S-I. Leakage current analysis of diamond Schottky barrier diodes operated at high temperature [J]. Japanese Journal of Applied Physics,2014,53(4S):04EP04:1-4. [22] UMEZAWA H, SHIKATA S-I, FUNAKI T. Diamond Schottky barrier diode for high-temperature,high-power,and fast switching applications [J]. Japanese Journal of Applied Physics,2014,53(5S1):05FP6:1-4. [23] YOUNG S J,CHANG S J,JI L W,et al. Thermally stable Ir/n-ZnO Schottky diodes [J]. Microelectronic Engineering,2011,88(1):113-116. [24] KOIDE Y,LIAO M Y, AlVAREZ J. Thermally stable solar-blind diamond UV photodetector [J]. Diamond and Related Materials,2006,15(11/12):1962-1966. [25] UMEZAWA H, OHMAGARI S, MOKUNO Y, et al. Characterization of X-ray radiation hardness of diamond Schottky barrier diode and metal- semiconductor field-effect transistor[C]// 2017 29th International Symposium on Power Semiconductor Devices and IC’s (ISPSD). [S.l.]:IEEE,2017:379-382. [26] BREZEANU M,BUTLER T,AMARATUNGA G A J,et al. On-state behaviour of diamond Schottky diodes [J]. Diamond & Related Materials,2008,17(4/5):736-740. [27] RASHID S J, TAJANI A, TWITCHEN D J,et al. Numerical parameterization of chemical-vapor- deposited (CVD) single-crystal diamond for device simulation and analysis [J]. IEEE Transactions on Electron Devices,2008,55(10):2744-2756. [28] ZHAO D,HU C,LIU Z,et al. Diamond MIP structure Schottky diode with different drift layer thickness [J]. Diamond & Related Materials,2017,73:15-18. [29] BRUNET F,GERMI P,PERNET M,et al. The effect of boron doping on the lattice parameter of homoepitaxial diamond films [J]. Diamond & Related Materials,1998,7(6):869-873. [30] KITAGOH S,OKADA R,KAWANO A,et al. Cross- sectional TEM study and film thickness dependence of Tc in heavily boron-doped superconducting diamond [J]. Physica C,2010,470(Suppl. 1):610-612. [31] ALEGRE M P,ARAúJO D,FIORI A,et al. Critical boron-doping levels for generation of dislocations in synthetic diamond [J]. Applied Physics Letters,2014,105(17):173103:1-5. [32] NAGASE M, UMEZAWA H, SHIKATA S I. Vertical diamond Schottky barrier diode fabricated on insulating diamond substrate using deep etching technique [J]. IEEE Transactions on Electron Devices,2013,60(4):1416-1420. [33] MAKINO T,KATO H,TOKUDA N,et al. Diamond Schottky-pn diode without trade-off relationship between on-resistance and blocking voltage [J]. Physica Status Solidi(A):Applications and Materials Science,2010,207(9):2105-2109. [34] MATSUMOTO T, MUKOSE T, MAKINO T, et al. Diamond Schottky-pn diode using lightly nitrogen-doped layer [J]. Diamond and Related Materials,2017,75:152-154. [35] MAKINO T,TANIMOTO S,HAYASHI Y,et al. Diamond Schottky-pn diode with high forward current density and fast switching operation [J]. Applied Physics Letters,2009,94(26):262101:1-3. [36] YUAN X L, ZHENG Y T, ZHU X H, et al. Recent progress in diamond-based MOSFETs [J]. International Journal of Minerals, Metallurgy and Materials,2019,26(10):1195-1205. [37] PRINS J F. Bipolar transistor action in ion implanted diamond [J]. Applied Physics Letters,1982,41(10):950-952. [38] TSAI W, DELFINO M, HODUL D, et al. Diamond MESFET using ultrashallow RTP boron doping [J]. IEEE Electron Device Letters,1991,12(4):157-159. [39] ZEISSE C R,HEWETT C A,NGUYEN R,et al. An ion-implanted diamond metal-insulator-semiconductor field-effect transistor [J]. IEEE Electron Device Letters,1991,12(11):602-604. [40] PHAM T T, PERNOT J, PEREZ G, et al. Deep- depletion mode boron-doped monocrystalline diamond metal oxide semiconductor field effect transistor [J]. IEEE Electron Device Letters,2017,38(11):1571-1574. [41] ALEKSOV A,VESCAN A,KUNZE M,et al. Diamond junction FETs based on δ-doped channels[J]. Diamond and Related Materials,1999,8(2/3/4/5):941-945. [42] SUWA T,IWASAKI T,SATO K,et al. Normally-off diamond junction field-effect transistors with submicron channel [J]. IEEE Electron Device Letters,2016,37(2):209-211. [43] IWASAKI T, HOSHINO Y,TSUZUKI K,et al. High- temperature operation of diamond junction field-effect transistors with lateral p-n junctions[J]. IEEE Electron Device Letters,2013,34(9):1175-1177. [44] KATO H,MAKINO T,OGURA M,et al. Improvement of (001)-oriented diamond p-i-n diode by use of selective grown n+ layer [J]. Physica Status Solidi(A):Applications and Materials Science,2010,207(9):2099-2104. [45] IWASAKI T, KATO H, MAKINO T, et al. High- temperature bipolar-mode operation of normally-off diamond JFET [J]. IEEE Journal of the Electron Devices Society,2017,5(1):95-99. [46] KAWARADA H. Hydrogen-terminated diamond surfaces and interfaces [J]. Surface Science Reports,1996,26(7):205-206. [47] KAWARADA H, YAMADA T, XU D, et al. Wide temperature (10 K-700 K) and high voltage (~1 000 V) operation of C-H diamond MOSFETs for power electronics application[C]// 2014 IEEE International Electron Devices Meeting. IEEE,2014:279-282. [48] MATSUMOTO T,KATO H,OYAMA K,et al. Inversion channel diamond metal-oxide-semiconductor field- effect transistor with normally off characteristics [J]. Scientific Reports,2016,6:31585:1-6. [49] IKEDA K,UMEZAWA H,SHIKATA S,et al. Edge termination techniques for p-type diamond Schottky barrier diodes [J]. Diamond and Related Materials,2008,17(4/5):809-812. [50] UMEZAWA H,NAGASE M,KATO Y,et al. High temperature application of diamond power device [J]. Diamond and Related Materials,2012,24:201-205. [51] HUANG W,CHOW T P,YANG J,et al. High-voltage diamond Schottky rectifiers [J]. International Journal of High Speed Electronics and Systems,2004,14(3):872-878. [52] MATSUSHITA T, AOKI T, OTSU T, et al. Semi- insulating polycrystalline-silicon (SIPOS) passivation technology [J]. Japanese Journal of Applied Physics,1976,15(Suppl.1):35-40. [53] DRICHE K, UMEZAWA H, OHMAGARI S, et al. Electric field characterization of diamond metal semiconductor field effect transistors using electron beam induced current [J]. Materials Science Forum,2018,924:935-938. [54] UMEZAWA H,GIMA H,DRICHE K,et al. Defect and field-enhancement characterization through electron- beam-induced current analysis[J]. Applied Physics Letters,2017,110(18):182103:1-4. [55] KASU M,KUBOVIC M,ALEKSOV A,et al. Influence of epitaxy on the surface conduction of diamond film [J]. Diamond and Related Materials,2004,13(2):226-232. [56] KUMARESAN R,UMEZAWA H,TATSUMI N,et al. Device processing,fabrication and analysis of diamond pseudo-vertical Schottky barrier diodes with low leak current and high blocking voltage [J]. Diamond and Related Materials,2009,18(2/3):299-302. [57] GAUKROGER M P, MARTINEAU P M,CROWDER M J,et al. X-ray topography studies of dislocations in single crystal CVD diamond[J]. Diamond and Related Materials,2008,17(3):262-269. [58] UMEZAWA H, KATO Y, WATANABE H, et al. Characterization of crystallographic defects in homoepitaxial diamond films by synchrotron X-ray topography and cathodoluminescence [J]. Diamond and Related Materials,2011,20(4):523-526. [59] KATO Y,UMEZAWA H, SHIKATA S I,et al. Effect of an ultraflat substrate on the epitaxial growth of chemical-vapor-deposited diamond[J]. Applied Physics Express,2013,6(2):025506:1-3. [60] KATO Y, UMEZAWA H, SHIKATA S I. X-ray topographic study of defect in p-diamond layer of Schottky barrier diode[J]. Diamond and Related Materials,2015,57:22-27. [61] OHMAGARI S,TERAJI T,KOIDE Y. Non-destructive detection of killer defects of diamond Schottky barrier diodes [J]. Journal of Applied Physics,2011,110(5):056105:1-3.
[1]马志斌,陶利平,翁国峰,等.微波等离子体化学气相沉积金刚石光谱分析[J].武汉工程大学学报,2012,(06):49.[doi:103969/jissn16742869201206012]
MA Zhi\|bin,TAO Li\|ping,WENG Guo\|feng,et al.Spectroscopic analysis of microwave plasma for chemical vapor deposition diamond [J].Journal of Wuhan Institute of Technology,2012,(05):49.[doi:103969/jissn16742869201206012]