|本期目录/Table of Contents|

[1]王凡生,刘 繁*,汪建华,等.金刚石半导体器件的研究进展[J].武汉工程大学学报,2020,42(05):518-525.[doi:10.19843/j.cnki.CN42-1779/TQ.202002011]
 WANG Fansheng,LIU Fan*,WANG Jianhua,et al.Review of Diamond Semiconductor Devices[J].Journal of Wuhan Institute of Technology,2020,42(05):518-525.[doi:10.19843/j.cnki.CN42-1779/TQ.202002011]
点击复制

金刚石半导体器件的研究进展(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
42
期数:
2020年05期
页码:
518-525
栏目:
材料科学与工程
出版日期:
2021-01-29

文章信息/Info

Title:
Review of Diamond Semiconductor Devices
文章编号:
1674 - 2869(2020)05 - 0518 - 08
作者:
王凡生刘 繁*汪建华鲁振海王连忠
等离子体化学与新材料湖北省重点实验室(武汉工程大学),湖北 武汉 430205
Author(s):
WANG FanshengLIU Fan*WANG JianhuaLU ZhenhaiWANG Lianzhong
Hubei Key Laboratory of Plasma Chemistry and Advanced Materials(Wuhan Institute of Technology), Wuhan 430205, China
关键词:
金刚石半导体器件器件肖特基二极管场效应晶体管
Keywords:
diamond semiconductor device Schottky diode field-effect transistor
分类号:
TN305
DOI:
10.19843/j.cnki.CN42-1779/TQ.202002011
文献标志码:
A
摘要:
金刚石因其优异的物理化学特性,被视为下一代电力电子器件的终极材料,金刚石半导体器件的制备受到了科研工作者的广泛关注。文章对金刚石基二极管、开关器件和边缘终止效应等方面的研究成果进行了概述。着重阐述了金刚石半导体器件的电学特性,尤其是,在500 ℃高温条件下得到高正向电流密度,阻断能力大于10 kV,并展现出长程稳定性的肖特基势垒二极管;在金属半导体场效应晶体管与金属氧化物半导体场效应晶体管上制得阻断电压超过2 kV的开关器件。同时,针对加工技术带来的表面缺陷,详细讨论了金刚石器件的表面终止技术和缺陷对器件性能的影响,并展望了金刚石半导体在肖特基势垒二极管及场效应晶体管等领域的应用前景。
Abstract:
Diamond has been widely applied in many semiconductor devices because of its excellent physical and chemical properties. In this paper,the research of diamond-based diodes,switching devices and edge termination effects were briefly summarized with a special emphasis on the electrical characteristics of diamond semiconductor devices. The Schottky barrier diodes with high forward current density,blocking capacity greater than 10 kV and long-term stability were produced at 500 ℃,meanwhile,a switching device with blocking voltage exceeding 2 kV was created on metal semiconductor field-effect transistor and metal oxide semiconductor field-effect transistor. The surface termination technology and the influence of defects on the performance of diamond devices were discussed in detail. The applications of diamond semiconductor in Schottky barrier diode and field-effect transistor were also presented.

参考文献/References:

[1] ISBERG J,HAMMERSBERG J,JOHANSSON E,et al. High carrier mobility in single-crystal plasma-deposited diamond [J]. Science,2002,297(5587):1670-1672. [2] YU X X, ZHOU J J,WANG Y F, et al. Breakdown enhancement of diamond Schottky barrier diodes using boron implanted edge terminations [J]. Diamond and Related Materials,2019,92:146-149. [3] POMORSKI M,BERDERMANN E,DE BOER W,et al. Charge transport properties of single crystal CVD-diamond particle detectors [J]. Diamond and Related Materials,2007,16(4):1066-1069. [4] MORTET V, DAENEN M, TERAJI T, et al. Characterization of boron doped diamond epilayers grown in a NIRIM type reactor [J]. Diamond and Related Materials,2008,17(7/8/9/10):1330-1334. [5] VOLPE P N, MURET P, PERNOT J, et al. High breakdown voltage Schottky diodes synthesized on p-type CVD diamond layer [J]. Physica Status Solidi (A) Applications and Materials,2010,207(9):2088-2092. [6] VOLPE P N,MURET P,PERNOT J,et al. Extreme dielectric strength in boron doped homoepitaxial diamond [J]. Applied Physics Letters,2010,97(22):223501:1-3 .[7] SUZUKI M,SAKAI T,MAKINO T,et al. Electrical characterization of diamond PiN diodes for high voltage applications [J]. Physica Status Solidi,2013,210(10):2035-2049. [8] BORMASHOV V S, TERENTIEV S A, BUGA S G,et al. Thin large area vertical Schottky barrier diamond diodes with low on-resistance made by ion-beam assisted lift-off technique [J]. Diamond and Related Materials,2017,75:78-84. [9] HATHWAR R, DUTTA M, KOECK F A M, et al. Temperature dependent simulation of diamond depleted Schottky PIN diodes [J]. Journal of Applied Physics,2016,119(22):225703:1-7. [10] UMEZAWA H, TOKUDA N, OGURA M, et al. Characterization of leakage current on diamond Schottky barrier diodes using thermionic-field emission modeling [J]. Diamond and Related Materials,2006,15(11):1949-1953. [11] ZHAO D,LIU Z C,ZHANG X F,et al. Analysis of diamond pseudo-vertical Schottky barrier diode through patterning tungsten growth method [J]. Applied Physics Letters,2018,112(9):092102:1-4. [12] UMEZAWA H,IKEDA K,TATSUMI N,et al. Device scaling of pseudo-vertical diamond power Schottky barrier diodes [J]. Diamond and Related Materials,2009,18(9):1196-1199. [13] CRACIUN M, SABY C, MURET P, et al. A 3.4 eV potential barrier height in Schottky diodes on boron-doped diamond thin films [J]. Diamond and Related Materials,2004,13(2):292-295. [14] UMEZAWA H,SAITO T,TOKUDA N,et al. Leakage current analysis of diamond Schottky barrier diode [J]. Applied Physics Letters,2007,90(7):073506:1-3. [15] TERAJI T,KOIZUMI S,KOIDE Y,et al. Electric field breakdown of lateral Schottky diodes of diamond [J]. Japanese Journal of Applied Physics,2007,46(9):L196-L198. [16] TRAORE A,MURET P,FIORI A,et al. Zr/oxidized diamond interface for high power Schottky diodes [J]. Applied Physics Letters,2014,104(5):052105:1-4. [17] FIORI A, TERAJI T, KOIDE Y. Diamond Schottky diodes with ideality factors close to 1 [J]. Applied Physics Letters,2014,105(13):133515:1-4. [18] UMEZAWA H, IKEDA K, KUMARESAN R,et al. Increase in reverse operation limit by barrier height control of diamond Schottky barrier diode [J]. IEEE Electron Device Letters,2009,30(9):960-962. [19] MURET P R, TRAORé A, MARéCHAL A, et al. Potential barrier heights at metal on oxygen-terminated diamond interfaces [J]. Journal of Applied Physics,2015,118(20):204505:1-21. [20] TERAJI T,LIAO M Y, KOIDE Y. Localized mid- gap-states limited reverse current of diamond Schottky diodes [J]. Journal of Applied Physics,2012,111(10):104503:1-7. [21] UMEZAWA H,SHIKATA S-I. Leakage current analysis of diamond Schottky barrier diodes operated at high temperature [J]. Japanese Journal of Applied Physics,2014,53(4S):04EP04:1-4. [22] UMEZAWA H, SHIKATA S-I, FUNAKI T. Diamond Schottky barrier diode for high-temperature,high-power,and fast switching applications [J]. Japanese Journal of Applied Physics,2014,53(5S1):05FP6:1-4. [23] YOUNG S J,CHANG S J,JI L W,et al. Thermally stable Ir/n-ZnO Schottky diodes [J]. Microelectronic Engineering,2011,88(1):113-116. [24] KOIDE Y,LIAO M Y, AlVAREZ J. Thermally stable solar-blind diamond UV photodetector [J]. Diamond and Related Materials,2006,15(11/12):1962-1966. [25] UMEZAWA H, OHMAGARI S, MOKUNO Y, et al. Characterization of X-ray radiation hardness of diamond Schottky barrier diode and metal- semiconductor field-effect transistor[C]// 2017 29th International Symposium on Power Semiconductor Devices and IC’s (ISPSD). [S.l.]:IEEE,2017:379-382. [26] BREZEANU M,BUTLER T,AMARATUNGA G A J,et al. On-state behaviour of diamond Schottky diodes [J]. Diamond & Related Materials,2008,17(4/5):736-740. [27] RASHID S J, TAJANI A, TWITCHEN D J,et al. Numerical parameterization of chemical-vapor- deposited (CVD) single-crystal diamond for device simulation and analysis [J]. IEEE Transactions on Electron Devices,2008,55(10):2744-2756. [28] ZHAO D,HU C,LIU Z,et al. Diamond MIP structure Schottky diode with different drift layer thickness [J]. Diamond & Related Materials,2017,73:15-18. [29] BRUNET F,GERMI P,PERNET M,et al. The effect of boron doping on the lattice parameter of homoepitaxial diamond films [J]. Diamond & Related Materials,1998,7(6):869-873. [30] KITAGOH S,OKADA R,KAWANO A,et al. Cross- sectional TEM study and film thickness dependence of Tc in heavily boron-doped superconducting diamond [J]. Physica C,2010,470(Suppl. 1):610-612. [31] ALEGRE M P,ARAúJO D,FIORI A,et al. Critical boron-doping levels for generation of dislocations in synthetic diamond [J]. Applied Physics Letters,2014,105(17):173103:1-5. [32] NAGASE M, UMEZAWA H, SHIKATA S I. Vertical diamond Schottky barrier diode fabricated on insulating diamond substrate using deep etching technique [J]. IEEE Transactions on Electron Devices,2013,60(4):1416-1420. [33] MAKINO T,KATO H,TOKUDA N,et al. Diamond Schottky-pn diode without trade-off relationship between on-resistance and blocking voltage [J]. Physica Status Solidi(A):Applications and Materials Science,2010,207(9):2105-2109. [34] MATSUMOTO T, MUKOSE T, MAKINO T, et al. Diamond Schottky-pn diode using lightly nitrogen-doped layer [J]. Diamond and Related Materials,2017,75:152-154. [35] MAKINO T,TANIMOTO S,HAYASHI Y,et al. Diamond Schottky-pn diode with high forward current density and fast switching operation [J]. Applied Physics Letters,2009,94(26):262101:1-3. [36] YUAN X L, ZHENG Y T, ZHU X H, et al. Recent progress in diamond-based MOSFETs [J]. International Journal of Minerals, Metallurgy and Materials,2019,26(10):1195-1205. [37] PRINS J F. Bipolar transistor action in ion implanted diamond [J]. Applied Physics Letters,1982,41(10):950-952. [38] TSAI W, DELFINO M, HODUL D, et al. Diamond MESFET using ultrashallow RTP boron doping [J]. IEEE Electron Device Letters,1991,12(4):157-159. [39] ZEISSE C R,HEWETT C A,NGUYEN R,et al. An ion-implanted diamond metal-insulator-semiconductor field-effect transistor [J]. IEEE Electron Device Letters,1991,12(11):602-604. [40] PHAM T T, PERNOT J, PEREZ G, et al. Deep- depletion mode boron-doped monocrystalline diamond metal oxide semiconductor field effect transistor [J]. IEEE Electron Device Letters,2017,38(11):1571-1574. [41] ALEKSOV A,VESCAN A,KUNZE M,et al. Diamond junction FETs based on δ-doped channels[J]. Diamond and Related Materials,1999,8(2/3/4/5):941-945. [42] SUWA T,IWASAKI T,SATO K,et al. Normally-off diamond junction field-effect transistors with submicron channel [J]. IEEE Electron Device Letters,2016,37(2):209-211. [43] IWASAKI T, HOSHINO Y,TSUZUKI K,et al. High- temperature operation of diamond junction field-effect transistors with lateral p-n junctions[J]. IEEE Electron Device Letters,2013,34(9):1175-1177. [44] KATO H,MAKINO T,OGURA M,et al. Improvement of (001)-oriented diamond p-i-n diode by use of selective grown n+ layer [J]. Physica Status Solidi(A):Applications and Materials Science,2010,207(9):2099-2104. [45] IWASAKI T, KATO H, MAKINO T, et al. High- temperature bipolar-mode operation of normally-off diamond JFET [J]. IEEE Journal of the Electron Devices Society,2017,5(1):95-99. [46] KAWARADA H. Hydrogen-terminated diamond surfaces and interfaces [J]. Surface Science Reports,1996,26(7):205-206. [47] KAWARADA H, YAMADA T, XU D, et al. Wide temperature (10 K-700 K) and high voltage (~1 000 V) operation of C-H diamond MOSFETs for power electronics application[C]// 2014 IEEE International Electron Devices Meeting. IEEE,2014:279-282. [48] MATSUMOTO T,KATO H,OYAMA K,et al. Inversion channel diamond metal-oxide-semiconductor field- effect transistor with normally off characteristics [J]. Scientific Reports,2016,6:31585:1-6. [49] IKEDA K,UMEZAWA H,SHIKATA S,et al. Edge termination techniques for p-type diamond Schottky barrier diodes [J]. Diamond and Related Materials,2008,17(4/5):809-812. [50] UMEZAWA H,NAGASE M,KATO Y,et al. High temperature application of diamond power device [J]. Diamond and Related Materials,2012,24:201-205. [51] HUANG W,CHOW T P,YANG J,et al. High-voltage diamond Schottky rectifiers [J]. International Journal of High Speed Electronics and Systems,2004,14(3):872-878. [52] MATSUSHITA T, AOKI T, OTSU T, et al. Semi- insulating polycrystalline-silicon (SIPOS) passivation technology [J]. Japanese Journal of Applied Physics,1976,15(Suppl.1):35-40. [53] DRICHE K, UMEZAWA H, OHMAGARI S, et al. Electric field characterization of diamond metal semiconductor field effect transistors using electron beam induced current [J]. Materials Science Forum,2018,924:935-938. [54] UMEZAWA H,GIMA H,DRICHE K,et al. Defect and field-enhancement characterization through electron- beam-induced current analysis[J]. Applied Physics Letters,2017,110(18):182103:1-4. [55] KASU M,KUBOVIC M,ALEKSOV A,et al. Influence of epitaxy on the surface conduction of diamond film [J]. Diamond and Related Materials,2004,13(2):226-232. [56] KUMARESAN R,UMEZAWA H,TATSUMI N,et al. Device processing,fabrication and analysis of diamond pseudo-vertical Schottky barrier diodes with low leak current and high blocking voltage [J]. Diamond and Related Materials,2009,18(2/3):299-302. [57] GAUKROGER M P, MARTINEAU P M,CROWDER M J,et al. X-ray topography studies of dislocations in single crystal CVD diamond[J]. Diamond and Related Materials,2008,17(3):262-269. [58] UMEZAWA H, KATO Y, WATANABE H, et al. Characterization of crystallographic defects in homoepitaxial diamond films by synchrotron X-ray topography and cathodoluminescence [J]. Diamond and Related Materials,2011,20(4):523-526. [59] KATO Y,UMEZAWA H, SHIKATA S I,et al. Effect of an ultraflat substrate on the epitaxial growth of chemical-vapor-deposited diamond[J]. Applied Physics Express,2013,6(2):025506:1-3. [60] KATO Y, UMEZAWA H, SHIKATA S I. X-ray topographic study of defect in p-diamond layer of Schottky barrier diode[J]. Diamond and Related Materials,2015,57:22-27. [61] OHMAGARI S,TERAJI T,KOIDE Y. Non-destructive detection of killer defects of diamond Schottky barrier diodes [J]. Journal of Applied Physics,2011,110(5):056105:1-3.

相似文献/References:

[1]马志斌,陶利平,翁国峰,等.微波等离子体化学气相沉积金刚石光谱分析[J].武汉工程大学学报,2012,(06):49.[doi:103969/jissn16742869201206012]
 MA Zhi\|bin,TAO Li\|ping,WENG Guo\|feng,et al.Spectroscopic analysis of microwave plasma for chemical vapor deposition diamond [J].Journal of Wuhan Institute of Technology,2012,(05):49.[doi:103969/jissn16742869201206012]

备注/Memo

备注/Memo:
收稿日期:2020-02-16作者简介:王凡生,硕士研究生。E-mail:[email protected]*通讯作者:刘 繁,博士,讲师。E-mail: [email protected]引文格式:王凡生,刘繁,汪建华,等. 金刚石半导体器件的研究进展[J]. 武汉工程大学学报,2020,42(5):518-525.
更新日期/Last Update: 2020-10-30