|本期目录/Table of Contents|

[1]高巧玲,范功端*.硅灰对新型地质聚合物胶凝材料力学性能影响的研究进展[J].武汉工程大学学报,2020,42(05):540-545.[doi:10.19843/j.cnki.CN42-1779/TQ.202004008]
 GAO Qiaoling,FAN Gongduan*.Effects of Silica Fume on Mechanical Properties of Novel Geopolymer-Based Cementitious Materials: a Brief Review[J].Journal of Wuhan Institute of Technology,2020,42(05):540-545.[doi:10.19843/j.cnki.CN42-1779/TQ.202004008]
点击复制

硅灰对新型地质聚合物胶凝材料力学性能影响的研究进展(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
42
期数:
2020年05期
页码:
540-545
栏目:
材料科学与工程
出版日期:
2021-01-29

文章信息/Info

Title:
Effects of Silica Fume on Mechanical Properties of Novel Geopolymer-Based Cementitious Materials: a Brief Review
文章编号:
1674 - 2869(2020)05 - 0540 - 06
作者:
高巧玲范功端*
1. 福建船政交通职业学院土木工程学院,福建 福州 350000;2. 福州大学土木工程学院,福建 福州 350000
Author(s):
GAO QiaolingFAN Gongduan*
1. Department of Architectural Engineering,Fujian Chuanzheng Communications College,Fuzhou 350000,China;2. College of Civil Engineering,Fuzhou University,Fuzhou 350000,China
关键词:
硅灰地质聚合物建筑材料力学性能
Keywords:
silica fume geopolymer building material mechanical property
分类号:
TU52
DOI:
10.19843/j.cnki.CN42-1779/TQ.202004008
文献标志码:
A
摘要:
硅灰是冶炼金属硅或硅铁合金过程中产生的主要固体废弃物。目前,对硅灰的资源化利用受到了广泛的关注。根据地质聚合物所使用原料的不同,简要综述了硅灰对粉煤灰和偏高岭土基地质聚合物力学性能的影响。通过对比分析发现,硅灰掺杂能有效促进地质聚合物中N-A-S-H相的形成,从而改善其力学性能。与偏高岭土相比,粉煤灰中惰性石英相含量较高,难以活化,因此对硅灰需求量较大,这对于实际工业应用具有重要的指导作用,也为硅灰固体废弃物的高附加值利用新思路提供理论基础。
Abstract:
Silica fume is the main solid waste in the production processes of metal silicon or ferrosilicon alloy. The recovery of silica fume waste has been highly concerned recently. This study presents a brief overview on the effects of silica fume on mechanical properties of fly ash and metakaolin-based geopolymers. It is found that the mechanical capacity of metakaolin or fly-ash-based geopolymers can be significantly improved by the addition of silica fume waste. The fly-ash-based geopolymer in most cases requires more silica fume than the metakaolin-based one since the presence of abundant inactive quartz phase in the previous one. The results show an important guidance for the practical industrial application,and also provides theoretical basis for high value-added recovery of silica fume waste.

参考文献/References:

[1] ZHU W J,LI X T,WU D,et al. Synthesis of spherical mesoporous silica materials by pseudomorphic transformation of silica fume a nd its Pb2+ removal properties [J]. Microporous and Mesoporous Materials,2016,222:192-201. [2] ZHU W J,WU D,LI X T,et al. Synthesis of mesoporous silica materials (MCM-41) using silica fume as the silica source in a binary surfactant system assisted by post-hydrothermal treatment and its Pb2+ removal properties[J]. The Canadian Journal of Chemical Engineering,2017,95(1):46-54. [3] ZHU W J,LI M M,ZHOU Y,et al. Effect of binary surfactant system on morphologies and structural properties of mesoporous silica materials prepared from silica fume [J]. Integrated Ferroelectrics,2013,147:115-122. [4] LIU Y W. Improving the abrasion resistance of hydraulic-concrete containing surface crack by adding silica fume[J]. Construction & Building Materials,2007,21(5):972-977. [5] DUXSON P, FERNáNDEZ-JIMéNEZ A, PROVIS J L,et al. Geopolymer technology:the current state of the art[J]. Journal of Materials Science,2007,42(9):2917-2933. [6] DUXSON P, PROVIS J L. Designing precursors for geopolymer cements[J]. Journal of the American Ceramic Society,2008,91(12):3864-3869. [7] TANG Q, HE Y, WANG Y P, et al. Study on synthesis and characterization of ZSM-20 zeolites from metakaolin-based geopolymers [J]. Applied Clay Science,2016,129:102-107. [8] CHEN H, ZHANG Y J, HE P Y, et al. Cost-effective and facile one step synthesis of ZSM-5 from silica fume waste with the aid of metakaolin and its NOx removal performance [J]. Powder Technology,2020,367:558-567. [9] ZHANG B, MACKENZIE K J D, BROWN I W M. Crystalline phase formation in metakaolinite geopolymers activated with NaOH and sodium silicate [J]. Journal of Materials Science,2009,44(17):4668-4676. [10] ZHANG Y J, LIU L C. Fly ash-based geopolymer as a novel photocatalyst for degradation of dye from wastewater [J]. Particuology,2013,11(3):353-358. [11] SONGPIRIYAKIJ S, KUBPRASIT T, JATURAPITAKKUL C,et al. Compressive strength and degree of reaction of biomass-and fly ash-based geopolymer [J]. Construction & Building Materials,2010,24(3):236-240. [12] SABIR B B,WILD S,BAI J. Metakaolin and calcined clays as pozzolans for concrete:a review [J]. Cement & Concrete Composites,2001,23(6):441-454. [13] TCHAKOUTé H K, RüSCHER C H, KONG S,et al. Comparison of metakaolin-based geopolymer cements from commercial sodium waterglass and sodium waterglass from rice husk ash [J]. Journal of Sol Gel Science & Technology,2016,78(3):492-506. [14] TCHAKOUTé H K,RüSCHER C H,KONG S,et al. Geopolymer binders from metakaolin using sodium waterglass from waste glass and rice husk ash as alternative activators:a comparative study [J]. Construction & Building Materials,2016,114:276- 289. [15] TIPPAYASAM C,SUTIKULSOMBAT S,PARAMEE J,et al. Development of geopolymer mortar from metakaolin blended with agricultural and industrial wastes [J]. Key Engineering Materials,2018,766:305-310. [16] LATELLA B A, PERERA D S, DURCE D, et al. Mechanical properties of metakaolin-based geopolymers with molar ratios of Si/Al≈2 and Na/Al≈1 [J]. Journal of Materials Science,2008,43(8):2693-2699. [17] LIZCANO M,GONZALEZ A,BASU S,et al. Effects of water content and chemical composition on structural properties of alkaline activated metakaolin-based geopolymers[J]. Journal of the American Ceramic Society,2012,95(7):2169-2177. [18] WAN Q,RAO F,SONG S X,et al. Geopolymerization reaction,microstructure and simulation of metakaolin- based geopolymers at extended Si/Al ratios[J]. Cement & Concrete Composites,2017,79:45-52. [19] UYSAL M,AL-MASHHADANI M M,AYG?RMEZ Y,et al. Effect of using colemanite waste and silica fume as partial replacement on the performance of metakaolin-based geopolymer mortars[J]. Construction and Building Materials,2018,176:271-282. [20] HENON J, ALZINA A, ABSI J, et al. Potassium geopolymer foams made with silica fume pore forming agent for thermal insulation[J]. Journal of Porous Materials,2013,20(1):37-46. [21] SAIKRASOON A,JIEMSIRILERS S,LAORATANAKUL P. Influence of alkaline concentration on physical properties of porous geopolymer using silica fume as foaming agent[J]. Key Engineering Materials, 2015,659:106-110. [22] PRUD’HOMME E,MICHAUD P,JOUSSEIN E,et al. In situ inorganic foams prepared from various clays at low temperature[J]. Applied Clay Science,2011,51(1/2):15-22. [23] ?KVáRA F,?ULC R,TI?LER Z,et al. Preparation and properties of fly ash-based geopolymer foams [J]. Ceramics Silikáty,2014,58(3):188-197. [24] G?K?E H S, HATUNGIMANA D, RAMYAR K. Effect of fly ash and silica fume on hardened properties of foam concrete[J]. Construction and Building Materials,2019,194:1-11. [25] JIANG J,LU Z Y,NIU Y H,et al. Investigation of the properties of high-porosity cement foams based on ternary Portland cement-metakaolin-silica fume blends [J]. Construction & Building Materials,2016,107:181-190. [26] ABO SAWAN S E,ZAWRAH M F,KHATTAB R M,et al. In-situ formation of geopolymer foams through addition of silica fume:preparation and sinterability [J]. Materials Chemistry and Physics,2020,239:121998:1-11. [27] LóPEZ F J,SUGITA S,TAGAYA M,et al. Metakaolin- based geopolymers for targeted adsorbents to heavy metal ion separation [J]. Journal of Materials Science and Chemical Engineering,2014,2(7):16-27. [28] HOWER J C,SENIOR C L,SUUBERG E M, et al. Mercury capture by native fly ash carbons in coal-fired power plants [J]. Progress in Energy & Combustion Science,2010,36(4):510-529. [29] WANG S B,BOYJOO Y,CHOUEIB A,et al. Removal of dyes from aqueous solution using fly ash and red mud [J]. Water Research,2005,39(1):129-138. [30] SHIGEMOTO N,HAYASHI H,MIYAURA K. Selective Formation of Na-X zeolite from coal fly ash by fusion with sodium hydroxide prior to hydrothermal reaction [J]. Journal of Materials Science, 1993, 28(17):4781-4786. [31] HAGENMAIER H,KRAFT M,BRUNNER H,et al. Catalytic effects of fly ash from waste incineration facilities on the formation and decomposition of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans [J]. Environmental Science & Tech- nology,1987,21(11):1080-1084. [32] VAN JAARSVELD J G S, VAN DEVENTER J S J. Effect of the alkali metal activator on the properties of fly ash-based geopolymers [J]. Industrial & Engineering Chemistry Research,1999,38(10):3932-3941. [33] GUO X L,SHI H S,DICK W A. Compressive strength and microstructural characteristics of class C fly ash geopolymer [J]. Cement & Concrete Composites,2010,32(2):142-147. [34] BOHLOOLI H,NAZARI A, KHALAJ G, et al. Experimental investigations and fuzzy logic modeling of compressive strength of geopolymers with seeded fly ash and rice husk bark ash [J]. Composites Part B:Engineering,2012,43(3):1293-1301. [35] MARJANOVI   N,KOMLJENOVI   M,BA?  AREVI   Z,et al. Improving reactivity of fly ash and properties of ensuing geopolymers through mechanical activation [J]. Construction and Building Materials,2014,57:151-162. [36] YANG Z X,HA N R,JANG M S,et al. Geopolymer concrete fabricated by waste concrete sludge with silica fume [J]. Materials Science Forum,2009,620/621/622:791-794. [37] OKOYE F N, DURGAPRASAD J, SINGH N B. Effect of silica fume on the mechanical properties of fly ash based-geopolymer concrete[J]. Ceramics International,2016,42(2):3000-3006. [38] OKOYE F N, PRAKASH S,SINGH N B. Durability of fly ash based geopolymer concrete in the presence of silica fume [J]. Journal of Cleaner Production,2017,149:1062-1067. [39] DUAN P, YAN C J, ZHOU W. Compressive strength and microstructure of fly ash based geopolymer blended with silica fume under thermal cycle [J]. Cement and Concrete Composites,2017,78:108-119. [40] TIAN Q Z,NAKAMA S,SASAKI K. Immobilization of cesium in fly ash-silica fume based geopolymers with different Si/Al molar ratios [J]. Science of the Total Environment,2019,687:1127-1137. [41] 王亚超,张耀君,徐德龙. 碱激发硅灰-粉煤灰基矿物聚合物的研究[J]. 硅酸盐通报,2011,30(1):50-54.

相似文献/References:

[1]李炳昊,肖莲珍*,邹 迪.硅灰掺量对水泥基材早期收缩性能的影响[J].武汉工程大学学报,2016,38(05):447.[doi:10. 3969/j. issn. 1674?2869. 2016. 05. 007]
 LI Binghao,XIAO Lianzhen*,ZOU Di.Influence of Silica Fume Content on Shrinkage of Early-Age Cement-Based Materials[J].Journal of Wuhan Institute of Technology,2016,38(05):447.[doi:10. 3969/j. issn. 1674?2869. 2016. 05. 007]
[2]谢岁岁,饶 曦,张 芳,等.增强型地质聚合物的制备[J].武汉工程大学学报,2016,38(05):458.[doi:10. 3969/j. issn. 1674?2869. 2016. 05. 009]
 XIE Suisui,RAO Xi,ZHANG Fang,et al.Preparation of Reinforced Geopolymer[J].Journal of Wuhan Institute of Technology,2016,38(05):458.[doi:10. 3969/j. issn. 1674?2869. 2016. 05. 009]
[3]陈亚兵,严泽稷,鲁 娅,等.硅灰与氧化石墨烯对硬化水泥浆体的复合增强效应[J].武汉工程大学学报,2017,39(05):471.[doi:10. 3969/j. issn. 1674?2869. 2017. 05. 012]
 CHEN Yabing,YAN Zeji,LU Ya,et al.Compound Enhancement Effect of Silica Fume and Graphene Oxide on Hardened Cement Paste[J].Journal of Wuhan Institute of Technology,2017,39(05):471.[doi:10. 3969/j. issn. 1674?2869. 2017. 05. 012]
[4]鲁博文,羿庄城,吴艳光*,等.几种填料对偏高岭土-粉煤灰基地质聚合物的增强改性[J].武汉工程大学学报,2020,42(03):293.[doi:10.19843/j.cnki.CN42-1779/TQ.201909013]
 LU Bowen,YI Zhuangcheng,WU Yanguang*,et al.Reinforcement and Modification of Metakaolin-Fly Ash Based Geopolymer with Several Fillers[J].Journal of Wuhan Institute of Technology,2020,42(05):293.[doi:10.19843/j.cnki.CN42-1779/TQ.201909013]
[5]柴 宽,高 佳,李小刚,等.钛酸钾晶须改性偏高岭土基多孔地质聚合物的制备与性能[J].武汉工程大学学报,2021,43(02):158.[doi:10.19843/j.cnki.CN42-1779/TQ.202106005]
 CHAI Kuan,GAO Jia,LI Xiaogang,et al.Preparation and Properties of Metakaolin Based Porous Geopolymer Modified by Potassium Titanate Whisker[J].Journal of Wuhan Institute of Technology,2021,43(05):158.[doi:10.19843/j.cnki.CN42-1779/TQ.202106005]

备注/Memo

备注/Memo:
收稿日期:2020-05-01基金项目:福建省教育厅科技项目(JAT160708)作者简介:高巧玲,博士研究生,讲师。E-mail:[email protected]*通讯作者:范功端,博士,副教授。E-mail:[email protected]引文格式:高巧玲,范功端. 硅灰对新型地质聚合物胶凝材料力学性能的影响研究[J]. 武汉工程大学学报,2020,42(5):540-545.
更新日期/Last Update: 2020-10-30