|本期目录/Table of Contents|

[1]杨述威,杨 侠*,张 刚,等.基于ANSYS再沸器管口接管应力的仿真分析[J].武汉工程大学学报,2020,42(06):674-677.[doi:10.19843/j.cnki.CN42-1779/TQ.202007014]
 YANG Shuwei,YANG Xia*,ZHANG Gang,et al.Simulation Analysis of Nozzle Stress of Reboiler Nozzle Based on ANSYS[J].Journal of Wuhan Institute of Technology,2020,42(06):674-677.[doi:10.19843/j.cnki.CN42-1779/TQ.202007014]
点击复制

基于ANSYS再沸器管口接管应力的仿真分析(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
42
期数:
2020年06期
页码:
674-677
栏目:
机电与信息工程
出版日期:
2021-01-30

文章信息/Info

Title:
Simulation Analysis of Nozzle Stress of Reboiler Nozzle Based on ANSYS
文章编号:
1674 - 2869(2020)06 - 0674 - 04
作者:
杨述威1杨 侠*1张 刚1杨 清2
1. 武汉工程大学机电工程学院,湖北 武汉 430205;2. 武汉鑫鼎泰技术有限公司,湖北 武汉 430223
Author(s):
YANG Shuwei1 YANG Xia*1 ZHANG Gang1YANG Qing2
1. School of Mechanical and Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205,China2. Wuhan Xin Ding Tai Technology Co., Ltd, Wuhan 430223, China
关键词:
接管数值模拟应力评定ANSYS再沸器
Keywords:
nozzle numerical simulation stress assessmentANSYSreboiler
分类号:
TQ053.2
DOI:
10.19843/j.cnki.CN42-1779/TQ.202007014
文献标志码:
A
摘要:
以某一型号再沸器管口接管为例,采用ANSYS有限元分析方法,构建接管管口有限元模型。根据再沸器接管管口的受力情况确定模型边界条件和载荷条件,通过有限元仿真计算获得管口接管处的TRESCA等效应力云图,然后根据JB4732《钢制压力容器——分析设计规范》进行应力强度评定。结果表明结构的最大应力(317.689 MPa)出现在接管与筒体连接处筒体一侧的外表面, 接管应力强度满足工况要求,研究结果验证了设计的安全性和合理性,为下一步再沸器管口接管结构优化设计提供了理论基础。
Abstract:
Taking a reboiler nozzle as an example,we constructed a finite element model of the nozzle by ANSYS finite element analysis method. The boundary conditions and loading conditions were determined according to the force of the reboiler nozzle. The contour plots of TRESCA equivalent stress at the nozzle connection was obtained. Finally, the stress intensity was evaluated according to the specification JB4732 "Steel Pressure Vessel——Analysis and Design Code". The results show that the maximum stress(317.689 MPa) of the structure occurs on the outer surface side of the cylinder at the connection of the nozzle , and the stress intensity of the nozzle satisfies requirements of practical applications. The research results validate the safety and rationality of the nozzle’s design. Furthermore, it can provide a theoretical basis for the optimal structural design of the reboiler nozzle in the future.

参考文献/References:

[1] 王义元. 水蒸气进料状态对重沸器换热过程的影响[J]. 化工设计通讯,2019, 45(9): 159-176. [2] 孙文强. 立式热虹吸再沸器的设计要点[J]. 科技创新与应用,2018(17):74-75. [3] 左安达,张文杰,郭晓岚. 基于子模型技术的压力容器切向接管应力分析[J]. 化工设备与管道,2017,54(2):1-7. [4] 王勇,甄勇,高勇. 基于ANSYS Workbench的压力容器开孔接管区的应力分析[J]. 广东化工,2012, 39(10): 180-181. [5] 林国庆,王茂廷. 基于ANSYS软件对压力容器开孔接管区的应力与疲劳分析[J]. 轻工机械,2011,29(2):116-119. [6] SHEN S M, FENG Z L. Fatigue growth behavior for a corner crack at a vessel/nozzle junction[J]. International Pressure Vessel & Piping, 1996, 68:319-324. [7] YAN H, WANG S J, RU H P. Strength analysis of pressure vessel with big openings[J]. Advanced Materials Research, 2012, 490: 2719-2722. [8] 杨晓. 甲醇合成反应器密集大开孔接管应力分析[J]. 科技视界,2020(11):72-75. [9] 戚晓宁,石磊,曹永. 压力容器管口应力分析[J]. 石油和化工设备,2009,12(8):13-15. [10] 刘海刚,马嫄情,苏文献,等. 内压圆筒开孔接管长度对有限元计算结果的影响[J]. 压力容器,2013,30(3): 20-24. [11] 朱立志. 球形封头接管结构的安全评定与优化[J]. 化工设备与管道,2015, 52(3): 20-23. [12] 林杨杰,金玉龙,苏文献. 压力容器开孔接管局部应力计算方法研究[J]. 化工设备与管道,2011,48(6): 1-5,9. [13] 赵宁,董金善,杨云雨. 椭圆封头大开孔补强有限元分析及试验研究[J]. 食品与机械,2016,32(4):103-105. [14] 刘豆豆,淡勇,裴梦琛. 基于有限元的压力容器开孔接管区的应力分析及优化设计[J]. 化工机械,2018,45(2):165-169. [15] 刘欢,吴喜军,张亚宁. 内压圆筒不同接管形式的有限元分析[J]. 化工科技,2019,27(5):31-35.

相似文献/References:

[1]肖云,周春梅,吴燕玲,等.露天采场高陡岩质边坡典型地段稳定性分析[J].武汉工程大学学报,2009,(03):34.
 XIAO Yun,ZHOU Chun mei,WU Yan ling,et al.Study on stability analysis of the typical area in highsteep slope of open pit[J].Journal of Wuhan Institute of Technology,2009,(06):34.
[2]刘繁,汪建华.TE103单模谐振腔的计算模拟及优化[J].武汉工程大学学报,2009,(03):56.
 LIU Fan,WANG Jian hua.Numerical simulation and optimization of electromagnetic field of TE103 singmode cavity[J].Journal of Wuhan Institute of Technology,2009,(06):56.
[3]庄芸.预应力碳纤维布加固梁最佳预应力水平的确定[J].武汉工程大学学报,2008,(04):15.
 ZHUANG Yun.Determination of the best prestressed level to reinforced concrete beams strengthened with prestressed carbon fiber reinforced polymer [J].Journal of Wuhan Institute of Technology,2008,(06):15.
[4]刘玉华,喻九阳,郑小涛,等.气气混合器的三维流场数值模拟[J].武汉工程大学学报,2008,(02):108.
 LIU Yu hua,YU Jiu yang,ZHENG Xiao tao,et al.The numerical simulation of fluid flow in a threedimensionalmodel of gasgas mixer[J].Journal of Wuhan Institute of Technology,2008,(06):108.
[5]魏化中,张志辉,帅健,等.基于有限元分析的下排渣门设计[J].武汉工程大学学报,2010,(05):85.[doi:10.3969/j.issn.16742869.2010.05.023]
 WEI Hua zhong,ZHANG Zhi hui,SHUAI Jian,et al.Structural design of the lower discharge gate based on FEA[J].Journal of Wuhan Institute of Technology,2010,(06):85.[doi:10.3969/j.issn.16742869.2010.05.023]
[6]管昌生,万兆,胡平放.地源热泵地埋管多层岩土温度场的数值分析[J].武汉工程大学学报,2011,(04):42.[doi:10.3969/j.issn.16742869.2011.04.011]
 GUAN Chang sheng,WAN Zhao,HU Ping fang.Numerical analysis on multilayer geotechnical temperature field of GSHP buried tube[J].Journal of Wuhan Institute of Technology,2011,(06):42.[doi:10.3969/j.issn.16742869.2011.04.011]
[7]孙亚忠,陈作炳,董新营.立磨内部流场的数值模拟[J].武汉工程大学学报,2011,(04):89.[doi:10.3969/j.issn.16742869.2011.04.023]
 SUN Ya zhong,CHEN Zuo bing,DONG Xin ying.Numerical simulation study of internal flow field in vertical roller mill[J].Journal of Wuhan Institute of Technology,2011,(06):89.[doi:10.3969/j.issn.16742869.2011.04.023]
[8]梅启双,张电吉,周春梅,等.充填体支护性能对采场围岩应力应变影响机理[J].武汉工程大学学报,2011,(07):69.
 MEI Qishuang,ZHANG Dianji,ZHOU Chunmei,et al.Influence mechanism of supporting property of fillmaterial on surrounding rock stress and strain of stope[J].Journal of Wuhan Institute of Technology,2011,(06):69.
[9]肖瑶,郑贤中,周宁波.卫星天线锅盖冲压成形模拟与优化[J].武汉工程大学学报,2011,(09):96.
 XIAO Yao,ZHENG Xianzhong,ZHOU Ningbo.Stamping simulation and optimization of satellite antenna pot[J].Journal of Wuhan Institute of Technology,2011,(06):96.
[10]舒安庆,刘凯,马长春,等.生物反应器内搅拌器的优化设计[J].武汉工程大学学报,2011,(11):66.
 SHU An qing,LIU Kai,MA Chang chun,et al.Optimization design of stirrer in bioreactor[J].Journal of Wuhan Institute of Technology,2011,(06):66.

备注/Memo

备注/Memo:
收稿日期:2020-07-27基金项目:国家自然科学基金(51276131)作者简介:杨述威,硕士研究生。E-mail:[email protected]*通讯作者:杨 侠,博士,教授。E-mail:[email protected]引文格式:杨述威,杨侠,张刚,等. 基于ANSYS再沸器管口接管应力的仿真分析[J]. 武汉工程大学学报,2020,42(6):674-677.
更新日期/Last Update: 2020-12-17