[1] 张先波,高飞鹏,袁显龙. 环境检测实验室危险废物的产生及处理分析[J]. 资源节约与环保,2020(8):50.[2] ROBERT K. Wildlife deaths are a grim wake-up call in eastern Europe[J]. Science, 2000, 287(5459):1737-1738.
[3] 刘文峰,苑兴伟,孙健,等. 含氰土壤污染治理技术研究进展[J]. 环境保护与循环经济,2020,40(6):32-35.
[4] World Health Organization. Guidelines for drinking-water quality: fourth edition[R]. Geneva:WHO , 2011.
[5] 尚会建.非均相臭氧—光催化氧化高盐含氰废水的工艺研究[D].天津:天津大学,2016.[6] 马文慧. 氰化镀铜电镀溶液中主成份的分析方法研究[J].科技创新与应用,2013(25):28.
[7] THOMPSON D T . Cyanide: social, industrial and economic aspects[J]. Gold Bulletin, 2001, 34(4):133.
[8] JIANG J Z, WANG X Y, ZHOU W J , et al. Extraction of gold from alkaline cyanide solution by the tetradecyldimethylbenzylammonium chloride/tri-n-butyl phosphate/n-heptane system based on a microemulsion mechanism[J]. Physical Chemistry Chemical Physics, 2002, 4(18):4489-4494.
[9] 赵传奇.碳纤维用高分子量聚丙烯腈纺丝溶液的研究[D]. 哈尔滨:哈尔滨工业大学, 2010.
[10] YAN Z X, ZHANG M M, XIE J M, et al. A bimetallic carbide Fe2MoC promoted Pd electrocatalyst with performance superior to Pt/C towards the oxygen reduction reaction in acidic media[J]. Applied Catalysis B Environmental, 2015, 165(4):636-641.
[11] 徐毅,龚文杰,陈海燕.坚果中微量氰化物的顶空气相色谱法测定[J].中国卫生检验杂志,2020,30(12):1432-1434.
[12] WANG P,YAO Y,XUE M. A novel fluorescent probe for paraquat and cyanide in water based on pillar[5]arene/10-methylacridinium iodide molecular recognition[J]. Chemical Communications, 2014, 50(39):5064-5067.
[13] MAHMOUD A M,MAHNASHI M H,EL-WEKIL M M,et al. Indirect differential pulse voltametric analysis of cyanide at porous copper based metal organic framework modified carbon paste electrode:Application to different water samples[J]. Talanta,2021,221:121562.
[14] GUPTA S, CHHIBBER M, MITTAL S K, et al. Amine derivative of tripenyl ether as an optical sensor for the detection of cyanide ions and traces of water in acetonitrile supported with voltametric studies[J]. Journal of Applied Electrochemistry,2020,50:185-195.
[15] RIOJAS A A C, WONG A, PLANES G A, et al. Development of a new electrochemical sensor based on silver sulfide nanoparticles and hierarchical porous carbon modified carbon paste electrode for determination of cyanide in river water samples[J]. Sensora and Actuctors,2019,287:544-550.
[16] 魏鑫,王遥雪,凌约涛,等.顶空气相色谱法测定固体废物中氰化物[J].化学分析计量,2020,29(6):15-18.
[17] RANDVIIR E P, BANKS C E. The latest developments in quantifying cyanide and hydrogen cyanide[J]. Trends in Analytical Chemistry, 2015, 64:75-85.[18] NIAMNONT N, KHUMSRI A, PROMCHAT A, et al. Novel salicylaldehyde derivatives as fluorescence turn-on sensors for cyanide ion[J]. Journal of Hazardous Materials, 2014, 280:458-463.
[19] YU J N, GYEONG J P, HYUN Y O, et al. A colorimetric chemosensor based on a Schiff base for highly selective sensing of cyanide in aqueous solution: the influence of solvents[J]. New Journal of Chemistry, 2014, 38(12):5769-5776.
[20] ZHANG P, SHI B B , WEI T B , et al. A naphtholic Schiff base for highly selective sensing of cyanide via different channels in aqueous solution[J]. Dyes & Pigments, 2013, 99(3):857-862.
[21] DENG S L, CHEN T L, CHIEN W L. Aggregation-enhanced emission in fluorophores containing pyridine and triphenylamine terminals: restricted molecular rotation and hydrogen-bond interaction[J]. Journal of Materials Chemistry C: Materials for Optical and Electronic Devices,2014,2(4):651-659.
[22] YUICHIRO U, JINEY J, AURORE L, et al. Encapsulated energy-transfer cassettes with extremely well resolved fluorescent outputs[J]. Journal of American Chemical Society, 2011, 133(1): 51.