|本期目录/Table of Contents|

[1]梁建东,杨 炎,董 帅,等.自修复电子器件的研究进展[J].武汉工程大学学报,2022,44(01):9-19.[doi:10.19843/j.cnki.CN42-1779/TQ.202103025]
 LIANG Jiandong,YANG Yan,DONG Shuai,et al.Recent Progress in Self-Healing Electronic Devices[J].Journal of Wuhan Institute of Technology,2022,44(01):9-19.[doi:10.19843/j.cnki.CN42-1779/TQ.202103025]
点击复制

自修复电子器件的研究进展(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
44
期数:
2022年01期
页码:
9-19
栏目:
综述
出版日期:
2022-02-28

文章信息/Info

Title:
Recent Progress in Self-Healing Electronic Devices
文章编号:
1674 - 2869(2022)01 - 0009 - 11
作者:
梁建东1杨 炎2董 帅2程李巍2刘 晓1王 华2张 旗*1刘治田*1
1. 湖北省光电与新能源材料工程技术研究中心,武汉工程大学材料科学与工程学院,湖北 武汉 430205;2. 北京航空航天大学化学学院,北京 100191
Author(s):
LIANG Jiandong1YANG Yan2DONG Shuai2CHENG Liwei2LIU Xiao1WANG Hua2ZHANG Qi*1LIU Zhitian*1
1. Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, School of Materials Science and Engineering,Wuhan Institute of Technology,Wuhan 430205,China;2. School of Chemistry,Beihang University,Beijing 100191,China
关键词:
自修复电子器件电化学储能二次电池传感器
Keywords:
self-healing electronic device electrochemical energy storage secondary battery sensor
分类号:
TQ152
DOI:
10.19843/j.cnki.CN42-1779/TQ.202103025
文献标志码:
A
摘要:
自修复材料具有自我修复损伤的能力,可以使器件在受外力破坏后一定程度上恢复原有结构和功能,因而可以提高电子器件的耐用性和使用寿命。首先介绍了自修复材料的种类和对应的自修复原理,然后重点论述了近年来报道的具有自修复能力的超级电容器、二次电池、太阳能电池以及传感器方面的研究进展,举例说明了自修复电子器件设计策略以及发展现状,分析了相关改性措施对器件性能与自修复能力的影响,并进一步讨论了自修复材料的作用机理与应用前景。最后总结了自修复电子器件当下待解决的问题,并对其未来发展方向进行了展望。
Abstract:
The self-healing materials have the ability to self-repair damage, which can restore the original structure and function to a certain extent after the device damaged by external force, thereby improving the durability and service life of the electronic device. This paper first introduces the types of self-healing materials and the corresponding self-healing principles, and then focuses on the research progress of supercapacitors, secondary batteries, solar cells and sensors with self-healing capabilities reported in recent years, illustrates the self-healing design strategies and the development status of electronic devices, the effects of the modified measures related to device performance and self-healing capabilities, and further discusses the mechanism and application prospect of self-healing materials. Finally, the current problems to be solved in self-repairing electronic devices are summarized, and the future development direction is prospected.

参考文献/References:

[1] 张胜年. 从生物力学角度认识骨骼肌损伤与修复[J]. 体育科研,2010,31(6):14-15. [2] 刘梓洋,李杨,刘兴江,等. 自修复聚合物在电化学储能领域的研究进展[J]. 材料工程,2021,49(1):1-10. [3] PEI Z X,YU Z W,LI M N,et al. Self-healing and toughness cellulose nanocrystals nanocomposite hydrogels for strain-sensitive wearable flexible sensor [J]. International Journal of Biological Macromolecules,2021,179:324-332. [4] KANG J H,TOK J B H,BAO Z N. Self-healing soft electronics [J]. Nature Electronics,2019,2(4):144-150. [5] YANG Y, URBAN M W. Self-healing polymeric materials [J]. Chemical Society Reviews,2013,42(17):7446-7467. [6] CALLEGARI D, COLOMBI S, NITTI A, et al. Autonomous self-healing strategy for stable sodium-ion battery:a case study of black phosphorus anodes [J]. ACS Applied Materials & Interfaces,2021,13(11):13170-13182. [7] SONG M M, WANG Y M, LIANG X Y, et al. Functional materials with self-healing properties:a review [J]. Soft Matter,2019,15(33):6615-6625. [8] 张雨,李孟宇,张慧慧,等. 本征型导电自修复材料的研究进展 [J]. 应用化工,2020,49(6):1532-1536,1540. [9] ZHU M S Q,LIU J,GAN L H,et al. Research progress in bio-based self-healing materials [J]. European Polymer Journal,2020,129:109651:1-19. [10] WANG H, ZHU B W, JIANG W C, et al. A mechanically and electrically self-healing supercapacitor[J]. Advanced Materials,2014,26(22):3638-3643.[11] ZHAO Y, ZHANG Y, SUN H, et al. A self-healing aqueous lithium-ion battery [J]. Angewandte Chemie (International Edition),2016,55(46):14384-14388. [12] WANG Z K, PAN Q M. An omni-healable supercapacitor integrated in dynamically cross-linked polymer networks [J]. Advanced Functional Materials,2017,27(24):1700690:1-8. [13] HAO Z H, TAO F, WANG Z K, et al. An omni-healable and tailorable aqueous lithium-ion battery [J]. ChemElectroChem,2018,5(4):637-642. [14] LIU F T,WANG J C,PAN Q M. An all-in-one self-healable capacitor with superior performance [J]. Journal of Materials Chemistry A,2018,6(6):2500-2506. [15] HU M M,WANG J Q,LIU J,et al. A flour-based one-stop supercapacitor with intrinsic self-healability and stretchability after self-healing and biodegradability [J]. Energy Storage Materials,2019,21:174-179. [16] TAO F,QIN L M,CHU Y,et al. Sodium hyaluronate: a versatile polysaccharide toward intrinsically self-healable energy-storage devices [J]. ACS Applied Materials & Interfaces,2019,11(3):3136-3141. [17] LUO C, FAN X L, MA Z H, et al. Self-healing chemistry between organic material and binder for stable sodium-ion batteries [J]. Chem,2017,3(6):1050-1062. [18] CHENG X L,PAN J,ZHAO Y,et al. Gel polymer electrolytes for electrochemical energy storage [J]. Advanced Energy Materials, 2018, 8(7):1702184:1-16. [19] GUO Y, ZHENG K Q, WAN P B. A flexible stretchable hydrogel electrolyte for healable all-in-one configured supercapacitors [J]. Small,2018,14(14):1704497:1-9. [20] CHEN C R, QIN H L, CONG H P,et al. A highly stretchable and real-time healable supercapacitor [J]. Advanced Materials,2019,31(19):1900573:1-10. [21] HUANG Y,LIU J,WANG J Q,et al. An intrinsically self-healing NiCo||Zn rechargeable battery with a self-healable ferric-ion-crosslinking sodium polyacrylate hydrogel electrolyte [J]. Angewandte Chemie(International Edition),2018,57(31):9810-9813. [22] HUANG S, WAN F, BI S S, et al. A self-healing integrated all-in-one zinc-ion battery [J]. Angewandte Chemie(International Edition),2019,58(13):4313-4317. [23] WANG D H, WANG L F, LIANG G J, et al. A superior δ-MnO2 cathode and a self-healing Zn-δ-MnO2 battery [J]. ACS Nano,2019,13(9):10643-10652. [24] RAN C X, GAO W Y, LI J R, et al. Conjugated organic cations enable efficient self-healing FASnI3 solar cells [J]. Joule,2019,3(12):3072-3087. [25] NIE W Y,BLANCON J C,NEUKIRCH A J,et al. Light-activated photocurrent degradation and self-healing in perovskite solar cells [J]. Nature Communications,2016,7:11574:1-9. [26] ZHAO Y C,WEI J,LI H, et al. A polymer scaffold for self-healing perovskite solar cells [J]. Nature Communications,2016,7:10228:1-9. [27] JIANG Y, QIU L B, JUáREZ-PéREZ E J, et al. Reduction of lead leakage from damaged lead halide perovskite solar modules using self-healing polymer-based encapsulation [J]. Nature Energy,2019,4(7):585-593. [28] RONG Q F,LEI W W,CHEN L,et al. Anti-freezing,conductive self-healing organohydrogels with stable strain-sensitivity at subzero temperatures [J]. Angewandte Chemie (International Edition),2017,56(45):14159-14163. [29] LIAO H,GUO X L,WAN P B,et al. Conductive MXene nanocomposite organohydrogel for flexible,healable,low-temperature tolerant strain sensors [J]. Advanced Functional Materials,2019,29(39):1904507:1-9. [30] SON D H,KANG J H,VARDOULIS O,et al. An integrated self-healable electronic skin system fabricated via dynamic reconstruction of a nanostructured conducting network [J]. Nature Nanotechnology,2018,13(11):1057-1065. [31] WANG J,TANG F,WANG Y,et al. Self-healing and highly stretchable gelatin hydrogel for self-powered strain sensor [J]. ACS Applied Materials & Interfaces,2020,12(1):1558-1566. [32] CAO Y,TAN Y J,LI S,et al. Self-healing electronic skins for aquatic environments [J]. Nature Electronics,2019,2(2):75-82. [33] TSAI M S,SHEN T L,WU H M,et al. Self-powered,self-healed, and shape-adaptive ultraviolet photodetectors [J]. ACS Applied Materials & Interfaces, 2020,12(8):9755-9765. [34] ZHAO Y, LI Z H, SONG S L,et al. Skin-inspired antibacterial conductive hydrogels for epidermal sensors and diabetic foot wound dressings [J]. Advanced Functional Materials,2019,29(31):1901474:1-12. [35] ZHU B W,WANG H,LIU Y Q,et al. Skin-inspired haptic memory arrays with an electrically reconfigurable architecture [J]. Advanced Materials,2016,28(8):1559-1566. [36] REKONDO A,MARTIN R,RUIZ DE LUZURIAGA A,et al. Catalyst-free room-temperature self-healing elastomers based on aromatic disulfide metathesis [J]. Materials Horizons,2014,1(2):237-240.[37] WHITE S R,SOTTOS N R,GEUBELLE P H,et al. Autonomic healing of polymer composites [J]. Nature,2001,409(6822):794-797. [38] TOOHEY K S,SOTTOS N R,LEWIS J A,et al. Self-healing materials with microvascular networks [J]. Nature Materials,2007,6(8):581-585. [39] HANSEN C J,WU W,TOOHEY K S,et al. Self-healing materials with interpenetrating microvascular networks [J]. Advanced Materials,2009,21(41):4143-4147. [40] PARK S, THANGAVEL G, PARIDA K, et al. A stretchable and self-healing energy storage device based on mechanically and electrically restorative liquid-metal particles and carboxylated polyurethane composites [J]. Advanced Materials,2019,31(1):1805536:1-10. [41] GUPTA S,ZHANG Q L,EMRICK T,et al. Entropy-driven segregation of nanoparticles to cracks in multilayered composite polymer structures [J]. Nature Materials,2006,5(3):229-233. [42] YANG Y, HE J L, LI Q, et al. Self-healing of electrical damage in polymers using superpara-magnetic nanoparticles[J]. Nature Nanotechnology,2019,14(2):151-155. [43] DENG G H, TANG C M, LI F Y, et al. Covalent cross-linked polymer gels with reversible sol-gel transition and self-healing properties[J]. Macro-molecules,2010,43(3):1191-1194. [44] CUI J X, DEL CAMPO A. Multivalent H-bonds for self-healing hydrogels[J]. Chemical Communica-tions,2012,48(74):9302-9304. [45] CAO Y, MORRISSEY T G, ACOME E, et al. A transparent,self-healing,highly stretchable ionic conductor [J]. Advanced Materials,2017,29(10):1605099:1-9.[46] LAI J C, JIA X Y, WANG D P, et al. Thermodynamically stable whilst kinetically labile coordination bonds lead to strong and tough self-healing polymers [J]. Nature Communications,2019,10:1164:1-9. [47] GUO H S, HAN Y, ZHAO W Q, et al. Universally autonomous self-healing elastomer with high stretchability [J]. Nature Communications,2020,11:2037:1-9. [48] HUANG Y,ZHONG M, HUANG Y, et al. A self-healable and highly stretchable supercapacitor based on a dual crosslinked polyelectrolyte [J]. Nature Communications,2015,6:10310:1-8. [49] GUO Y Z, ZHOU X, TANG Q Q, et al. A self-healable and easily recyclable supramolecular hydrogel electrolyte for flexible supercapacitors [J]. Journal of Materials Chemistry A,2016,4(22):8769-8776. [50] SUN H, YOU X, JIANG Y S, et al. Self-healable electrically conducting wires for wearable microelectronics[J]. Angewandte Chemie (Inter-national Edition),2014,53(36):9526-9531. [51] HUANG Y,HUANG Y,ZHU M S,et al. Magnetic-assisted,self-healable,yarn-based supercapacitor [J]. ACS Nano,2015,9(6):6242-6451. [52] WANG C, WU H, CHEN Z, et al. Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries [J]. Nature Chemistry,2013,5(12):1042-1048. [53] WU Y P, HUANG L,HUANG X K,et al. A room-temperature liquid metal-based self-healing anode for lithium-ion batteries with an ultra-long cycle life [J]. Energy & Environmental Science,2017,10(8):1854-1861. [54] CUI X M, CHU Y, QIN L M, et al. Stabilizing Li metal anodes through a novel self-healing strategy [J]. ACS Sustainable Chemistry & Engineering,2018,6(8):11097-11104. [55] WANG H ,WANG P P, FENG Y P, et al. Recent advances on self-healing materials and batteries [J]. ChemElectroChem,2019,6(6):1605-1622. [56] BERHE T A, SU W N, CHEN C H, et al. Organometal halide perovskite solar cells:degradation and stability [J]. Energy & Environmental Science,2016,9(2):323-356. [57] KAVADIYA S,NIEDZWIEDZKI D M, HUANG S,et al. Electrospray-assisted fabrication of moisture-resistant and highly stable perovskite solar cells at ambient conditions [J]. Advanced Energy Materials,2017,7(18):1700210:1-9. [58] WANG R, MUJAHID M,DUAN Y,et al. A review of perovskites solar cell stability [J]. Advanced Functional Materials,2019,29(47):1808843:1-25. [59] KHATIB M, ZOHAR O, SALIBA W, et al. A multifunctional electronic skin empowered with damage mapping and autonomic acceleration of self-healing in designated locations [J]. Advanced Materials,2020,32(17):2000246:1-7. [60] LIN F C,WANG Z,SHEN Y P,et al. Natural skin-inspired versatile cellulose biomimetic hydrogels [J]. Journal of Materials Chemistry A,2019,7(46):26442-26455. [61] MA D, WU X X, WANG Y G, et al. Wearable,antifreezing,and healable epidermal sensor assembled from long-lasting moist conductive nanocomposite organohydrogel [J]. ACS Applied Materials & Interfaces,2019,11(44):41701-41709. [62] HAN L, CUI S B, YU H Y, et al. Self-healable conductive nanocellulose nanocomposites for biocompatible electronic skin sensor systems [J]. ACS Applied Materials & Interfaces,2019,11(47):44642-44651. [63] PARK S, SHIN B G, JANG S, et al. Three-dimensional self-healable touch sensing artificial skin device [J]. ACS Applied Materials & Interfaces,2020,12(3):3953-3960. [64] LAI Y C, WU H M, LIN H C, et al. Entirely,intrinsically,and autonomously self-healable,highly transparent,and superstretchable triboelectric nanogenerator for personal power sources and self-powered electronic skins [J]. Advanced Functional Materials,2019,29(40):1904626:1-11.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2021-03-20基金项目:国家自然科学基金(51973169);武汉工程大学第十一届研究生教育创新基金(CX2019069)作者简介:梁建东,硕士研究生。E-mail:[email protected]?并列第一作者:杨 炎,硕士研究生。E-mail:[email protected]*通讯作者:张 旗,博士,副教授。E-mail:[email protected] 刘治田,博士,教授。E-mail:[email protected]引文格式:梁建东,杨炎,董帅,等. 自修复电子器件的研究进展[J]. 武汉工程大学学报,2022,44(1):9-19.
更新日期/Last Update: 2022-03-01