|本期目录/Table of Contents|

[1]陈 丹,刘杰庆,夏 品,等.苯与甲醇分子在ZSM-11分子筛中扩散行为的模拟[J].武汉工程大学学报,2021,43(02):143-147.[doi:10.19843/j.cnki.CN42-1779/TQ.202111013]
 CHEN Dan,LIU Jieqing,XIA Pin,et al.Simulation of Diffusion Behavior of Benzene and Methanol Molecules in ZSM-11 Zeolite[J].Journal of Wuhan Institute of Technology,2021,43(02):143-147.[doi:10.19843/j.cnki.CN42-1779/TQ.202111013]
点击复制

苯与甲醇分子在ZSM-11分子筛中扩散行为的模拟(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
43
期数:
2021年02期
页码:
143-147
栏目:
化学与化学工程
出版日期:
2021-04-30

文章信息/Info

Title:
Simulation of Diffusion Behavior of Benzene and Methanol Molecules in ZSM-11 Zeolite
文章编号:
1674 - 2869(2022)02 - 0143 - 05
作者:
陈 丹刘杰庆夏 品徐海泉戴亚芬闫志国*
武汉工程大学化工与制药学院,绿色化工过程教育部重点实验室(武汉工程大学),湖北省新型反应器与绿色化学工艺重点实验室(武汉工程大学),湖北 武汉 430205
Author(s):
CHEN Dan LIU Jieqing XIA Pin XU Haiquan DAI Yafeng YAN Zhiguo*
School of Chemical Engineering and Pharmacy,Wuhan Institute of Technology; Key Laboratory of Green Chemical Process (Wuhan Institute of Technology), Ministry of Education; Hubei Key Laboratory of Novel Reactor and Green Chemical Technology(Wuhan Institute of Technology),Wuhan 430205,China
关键词:
甲醇ZSM-11分子筛分子动力学扩散
Keywords:
benzene methanol ZSM-11 zeolite molecular dynamics diffusion
分类号:
O643.12
DOI:
10.19843/j.cnki.CN42-1779/TQ.202111013
文献标志码:
A
摘要:
为了研究烷基化反应组分在分子筛限域孔道中的扩散特性,以ZSM-11分子筛为催化剂,利用分子动力学方法研究了苯与甲醇烷基化反应中反应物分子的扩散行为,并基于均方位移、自扩散系数和径向分布函数,系统的讨论了反应物分子的扩散行为对烷基化反应的影响。结果表明:在反应温度为673?K时,客体分子的动力学直径、分子筛孔道结构以及分子间的竞争扩散均对客体分子在分子筛中的扩散行为产生了影响。将为扩散影响苯与甲醇烷基化反应后续路径选择性的研究提供一定的理论基础。
Abstract:
To study the diffusion characteristics of alkylation components in confined pores of zeolite, molecular dynamics method was used to explore the diffusion behavior of reactants in alkylation of benzene with methanol using ZSM-11 zeolite as catalyst.Based on the mean square displacement, self-diffusion coefficient, diffusion trajectory and radial distribution function, the influence of the reactant molecules’ diffusion behavior on alkylation reaction was systematically investigated,so as to study the diffusion characteristics of alkylation reaction components in the confined channels of molecular zeolite.The results show that the dynamic diameter of the guest molecules, channel structure of zeolite and competitive diffusion of the guest molecules affect the diffusion behavior of the guest molecules in zeolite at 673?K.This work will provide a theoretical basis for the subsequent study of diffusion effects on path selectivity of benzene and methanol alkylation reaction.

参考文献/References:

[1] ZHANG P P, TAN L, YANG G H, et al. One-pass selective conversion of syngas to para-xylene[J]. Chemical Science, 2017, 8(12): 7941-7946. [2] HU H, ZHANG Q, CEN J, et al. High suppression of the formation of ethylbenzene in benzene alkylation with methanol over ZSM-5 catalyst modified by platinum[J]. Catalysis Communications, 2014, 57: 129-133. [3] CARO J, KARGER J. From computer design to gas separation[J]. Nature Materials, 2020, 19(4): 374-375. [4] ALI S A, ALMULLA F M, JERMY B R, et al. Hierarchical composite catalysts of MCM-41 on zeolite Beta for conversion of heavy reformate to xylenes[J]. Journal of Industrial and Engineering Chemistry, 2021, 98: 189-199. [5] CHAKINALA N, CHAKINALA A G. Process design strategies to produce p-xylene via toluene methylation: a review[J]. Industrial & Engineering Chemistry Research, 2021, 60(15): 5331-5351. [6] 王革, 王楚厦, 于春梅. 我国纯苯市场产能井喷式扩张存隐忧[J]. 化学工业, 2010, 28(6): 28-31. [7] 徐金霞,王莉,叶蓓蓉. 煤基甲醇的现状、应用及产业化方向[J]. 山东化工, 2017, 46(5): 63-66. [8] 李婷,于洪锋,吴园斌. 苯烷基化的研究进展[J]. 辽宁化工, 2020, 49(8): 981-984. [9] 贾领军. 烷基化生产技术[J]. 化学工业, 2016, 34(3): 23-30. [10] DONG P, ZHANG Y F, LI Z Y, et al. Enhancement of the utilization of methanol in the alkylation of benzene with methanol over 3-aminopropyl-triethoxysilane modified HZSM-5[J]. Catalysis Communications, 2019, 123: 6-10. [11] 范宗良, 边杰, 季东. 改性纳米ZSM-11分子筛及其催化苯与甲醇烷基化反应的性能[J]. 分子催化, 2018, 32(2): 181-186. [12] LIU Z Q, CHU Y Y, TANG X M, et al. Diffusion dependence of the dual-cycle mechanism for MTO reaction inside ZSM-12 and ZSM-22 zeolites[J]. Journal of Physical Chemistry C, 2017, 121(41): 22872-22882. [13] LIU H, ZHANG S, XIE S J, et al. Synthesis,characterization, and catalytic performance of hierarchical ZSM‐11 zeolite synthesized via dual‐template route[J]. Chinese Journal of Catalysis, 2018, 39(1): 167-180. [14] WANG Y L, HE X, YANG F, et al. Control of framework aluminum distribution in MFI channels on the catalytic performance in alkylation of benzene with methanol[J]. Industrial & Engineering Chemistry Research, 2020, 59(30): 13420-13427. [15] WANG S, ZHANG L, LI S Y, et al. Tuning the siting of aluminum in ZSM-11 zeolite and regulating its catalytic performance in the conversion of methanol to olefins[J]. Journal of Catalysis, 2019, 377: 81-97. [16] WEN Z H, YANG D Q, HE X, et al. Methylation of benzene with methanol over HZSM-11 and HZSM-5: a density functional theory study[J]. Journal of Molecular Catalysis A: Chemical,2016,424:351-357. [17] TAN S L, DO D D, NICHOLSON D. Consistency of NVT, NPT, μVT and Gibbs (NV2T and NPT) with kinetic Monte Carlo schemes[J]. Chemical Engineer-ing Journal, 2020, 401: 126056-126093. [18] LIU H J, DAI S, JIANG D E. Insights into CO2/N2 separation through nanoporous graphene from molecular dynamics[J]. Nanoscale, 2013, 5(20): 9984-9987. [19] LIFSON S, HAGLER A T, DAUBER P. Consistent force field studies of intermolecular forces in hydrogen-bonded crystals. 1. Carboxylic acids, amides, and the C=O-H- hydrogen bonds[J]. Journal of the American Chemical Society 1979, 101 (18): 1501-5111. [20] LIFSON S, HAGLER A T, DAUBER P. Consistent force field studies of intermolecular forces in hydrogen-bonded crystals. 2. A benchmark for the objective comparison of alternative force fields[J]. Journal of the American Chemical Society, 1979, 101(18): 5122-5130. [21] SVELLE S, VISUR M, OLSBYE U, et al. Mechanistic aspects of the zeolite catalyzed methylation of alkenes and aromatics with methanol: a review[J]. Topics in Catalysis, 2011, 54(13/14/15): 897-906. [22] SVELLE S, BJ?RGEN M. Mechanistic proposal for the zeolite catalyzed methylation of aromatic compounds[J]. Journal of Physical Chemistry A, 2010, 114: 12548-12554. [23] LI J R, KUPPLER R J, ZHOU H C. Selective gas adsorption and separation in metal-organic frameworks[J]. Chemical Society Reviews, 2009, 38(5): 1477-1504. [24] YANG Z L, CAO D P. Effect of li doping on diffusion and separation of hydrogen and methane in covalent organic frameworks[J]. Journal of Physical Chemistry C, 2012, 116(23): 12591-12598. [25] BU L, NIMLOS M R, ROBICHAUD D J, et al. Diffusion of aromatic hydrocarbons in hierarchical mesoporous H-ZSM-5 zeolite[J]. Catalysis Today, 2018, 312: 73-81.

相似文献/References:

[1]刘洪武,金士威*,周小文,等.环己酮生产过程中苯对环己烷氧化反应的影响[J].武汉工程大学学报,2009,(03):16.
 LIU Hong wu,JIN Shi wei,ZHOU Xiao wen,et al.Influence of benzene on oxygenation of cyclohexane in production of cyclohexanone[J].Journal of Wuhan Institute of Technology,2009,(02):16.
[2]张玉婷,江学良*,朱仕惠,等.分散聚合法制备窄分散聚苯乙烯微球[J].武汉工程大学学报,2010,(03):85.
 ZHANG Yu ting,JIANG Xue liang,ZHU Shi hui,et al.Preparation of narrow distributed polystyrene microspheres by dispersion polymerization[J].Journal of Wuhan Institute of Technology,2010,(02):85.
[3]王 锐1,2,余甜雨1,等.热处理对Cu/Ag-OMS-2催化剂中铜物种表面状态的影响[J].武汉工程大学学报,2015,37(09):18.[doi:10. 3969/j. issn. 1674-2869. 2015. 09. 003]
 ,,et al.Effects of calcination treatment on surface state of copper species in Cu/Ag-OMS-2 catalysts[J].Journal of Wuhan Institute of Technology,2015,37(02):18.[doi:10. 3969/j. issn. 1674-2869. 2015. 09. 003]

备注/Memo

备注/Memo:
收稿日期:2021-11-16基金项目:国家自然科学基金(22008183);武汉工程大学研究生教育创新基金(CX2020015);湖北三峡实验室创新基金(SC212002)作者简介:陈 丹,硕士研究生。E-mail:[email protected]*通讯作者:闫志国,博士,教授。E-mail:[email protected]引文格式:陈丹,刘杰庆,夏品,等. 苯与甲醇分子在ZSM-11分子筛中扩散行为的模拟[J]. 武汉工程大学学报,2022,44(2):143-147,185.
更新日期/Last Update: 2022-04-28