[2] 费莹娜, 黄龙庭, 吴云韬, 等.非均匀噪声环境下基于矩阵补全的DOA估计方法[J].武汉工程大学学报, 2020,42(1): 97-101.
[3] 王家珂, 吴云韬, 巩朋成. 基于改进传播算子的双基地多输入多输出雷达参数估计[J].武汉工程大学学报, 2022,44(2): 209-212.
[4] VAIDYANATHAN P P, PAL P. Sparse sensing with co-prime samplers and arrays[J]. IEEE Transactions on Signal Processing, 2011,59: 573-586.
[5] ZHOU C W, SHI Z G, GU Y J, et al. DECOM: DOA estimation with combined MUSIC for coprime array[C]//International Conference on Wireless Communications and Signal Processing. Hangzhou: IEEE, 2013: 1-5.
[6] VAIDYANATHAN P P, PAL P. Coprime sampling and the music algorithm[C]//Digital Signal Processing and Signal Processing Education Meeting (DSP/SPE), Sedona: IEEE, 2011: 289-294.
[7] 孙兵,阮怀林, 吴晨曦, 等.非均匀噪声条件下的互质阵列欠定DOA估计方法[J].电子与信息学报,2021,43(12):3687-3694.
[8] VANPOUCKE F, PAULRAJ A. A harmonic noise model for direction finding in colored ambient noise[J]. IEEE Signal Processing Letters,1995,2(7):135-137.
[9] YANG L, YANG Y, WANG Y. Sparse spatial spectral estimation in directional noise environment[J]. The Journal of the Acoustical Society of America, 2016,140(3): EL263-EL268.
[10] MA R, BARZIGAR N, ROOZGARD A, et al. Decomposition approach for low-rank matrix completion and its applications[J]. IEEE Transac-tions on Signal Processing, 2014,62(7):1671-1683.
[11] ZHOU C W, GU Y J, FAN X Y, et al. Direction-of-arrival estimation for coprime array via virtual array interpolation[J]. IEEE Transactions on Signal Processing, 2018,66(22): 5956-5971.
[12] ZHENG Z, HUANG Y X, WANG W Q, et al. Direction-of-arrival estimation of coherent signals via coprime array interpolation[J]. IEEE Signal Processing Letters, 2020,27: 585-589.
[13] CANDES E, RECHT B. Exact matrix completion via convex optimization[J]. Foundations of computational mathetics, 2009,9(16): 717-772.
[14] HU Y, ZHANG D B, YE J P, et al. Fast and accurate matrix completion via truncated nuclear norm regularization[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013,35(9): 2117-2130.
[15] LIN Z, CHEN M, MA Y, et al. The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices[OL]. Available: arXiv: 2010:1009. 5055.
[16] LIANG H, KANG L, HUANG J. A robust low-rank matrix completion based on truncated nuclear norm and Lp-norm[J].The Journal of Supercomputing, 2022,78(11): 12950-12972?.
[17] JIANG X, ZHONG Z M, LIU X Z, et al. Robust matrix completion via alternating projection[J]. IEEE Signal Processing Letters, 2017,24(5):579-583.