[2] KAWACHI H, FUKUSUMI Y. New insight into podocyte slit diaphragm, a therapeutic target of proteinuria[J]. Clinical and Experimental Nephrology, 2020, 24(3): 193-204.
[3] TRAUTMANN A, SCHNAIDT S, LIPSKA-ZIETKIEWICZ B S, et al. Long-term outcome of steroid-resistant nephrotic syndrome in children[J]. Journal of the American Society of Nephrology, 2017, 28(10): 3055-3065.
[4] WANG N, DU N L, PENG Y H, et al. Network patterns of herbal combinations in traditional Chinese clinical prescriptions[J]. Frontiers in Pharmacology, 2020, 11: 590824: 1-12.
[5] 刘玲. 防己茯苓汤治疗肾病综合征体会[J]. 中国民族民间医药, 2010, 19(22): 188.
[6] HATTORI T, HAYASHI K, NAGAO T, et al. Studies on antinephritic effects of plant components (3): effect of pachyman, a main component of Poria cocos Wolf on original-type anti-GBM nephritis in rats and its mechanisms[J]. Japanese Journal of Pharmacology, 1992, 59(1): 89-96.
[7] YU J, ZHU C F, YIN J Z, et al. Tetrandrine suppresses transient receptor potential cation channel protein 6 overexpression- induced podocyte damage via blockage of RhoA/ROCK1 signaling[J]. Drug Design, Development and Therapy,2020,14:361-370.
[8] BERGER S I, IYENGAR R. Network analyses in systems pharmacology[J]. Bioinformatics and Biology Insights, 2009, 25(19): 2466-2472.
[9] XU X, ZHANG W X, HUANG C, et al. A novel chemometric method for the prediction of human oral bioavailability[J]. International Journal of Molecular Sciences, 2012, 13(6): 6964-6982.
[10] GFELLER D, GROSDIDIER A, WIRTH M, et al. SwissTargetPrediction: a web server for target prediction of bioactive small molecules[J]. Nucleic Acids Research, 2014, 42: 32-38.
[11] GU S Z, XUE Y, GAO Y, et al. Mechanisms of indigo naturalis on treating ulcerative colitis explored by GEO gene chips combined with network pharmacology and molecular docking[J]. Scientific Reports, 2020, 10(1): 15204:1-17.
[12] BADER G D, HOGUE C W V. An automated method for finding molecular complexes in large protein interaction networks[J]. BMC Bioinformatics, 2003, 4: 2:1-27.
[13] DENNIS G J R, SHERMAN B T, HOSACK D A, et al. DAVID: database for annotation, visualization, and integrated discovery[J]. Genome Biology and Evolution, 2003, 4: R60:1-11.
[14] SEELIGER D, DE GROOT B L. Ligand docking and binding site analysis with PyMOL and autodock/vina[J]. Journal of Computer-aided Molecular Design, 2010, 24(5): 417-422.
[15] LI X X, XU X, WANG J N, et al. A system-level investigation into the mechanisms of Chinese traditional medicine: compound Danshen formula for cardiovascular disease treatment[J]. Public Library of Science, 2012, 7(9): e43918:1-16.
[16] CHENG F, KOVáCS I A, BARABáSI A L. Network-based prediction of drug combinations[J]. Nature Communications, 2019, 10(1): 1197.
[17] WANG C S, GREENBAUM L A. Nephrotic syndrome[J]. Pediatric Clinics of North America, 2019, 66(1): 73-85.
[18] 孙蕾. 防己茯苓汤对急性肾损伤患者肾组织蛋白表达的影响[J]. 中医学报, 2016, 31: 715-717.
[19] CHENG H F, WANG S W, JO Y I, et al. Overexpression of cyclooxygenase-2 predisposes to podocyte injury[J]. Journal of the American Society of Nephrology, 2007, 18(2): 551-559.
[20] 任玮, 王湘, 包瑛, 等. 雌激素抑制受体型酪氨酸磷酸酯酶O促进小鼠肾足细胞增殖[J]. 分子影像学杂志, 2018, 41(4): 520-524.
[21] HAKIM F A, PFLUEGER A. Role of oxidative stress in diabetic kidney disease[J]. Medical Science Monitor, 2010, 16(2): 37-48.
[22] KOSHIKAWA M, MUKOYAMA M, MORI K, et al. Role of p38 mitogen-activated protein kinase activation in podocyte injury and proteinuria in experimental nephrotic syndrome[J]. Journal of the American Society of Nephrology, 2005, 16(9): 2690-2701.
[23] VERON D, REIDY K, MARLIER A, et al. Induction of podocyte VEGF164 overexpression at different stages of development causes congenital nephrosis or steroid-resistant nephrotic syndrome[J]. The American Journal of Pathology, 2010, 177(5): 2225-2233.
[24] ZHAI S B, LI M N, SUN B C, et al. Amelioration of lipopolysaccharide-induced nephrotic proteinuria by NFAT5 depletion involves suppressed NF-κB activity[J]. Inflammation, 2019, 42(4):1326-1335.
[25] SUN X M, SUN X H, LI Z Y, et al. Expression of NF-κB in juvenile rats with nephrotic syndrome and its effects on inflammatory changes and renal injury[J]. European Review for Medical and Pharmacological Sciences, 2019, 23(9): 4010-4016.
[26] SINGH A K, KOLLIGUNDLA L P, FRANCIS J, et al. Detrimental effects of hypoxia on glomerular podocytes[J]. Journal of Physiology and Biochemistry, 2021, 77(2): 193-203.
[27] ZHANG T H, LIANG Y, ZHANG J. Natural and synthetic compounds as dissociated agonists of glucocorticoid receptor[J]. Pharmacological Research Communications, 2020, 156: 104802:1-7.
[28] SUNDAHL N, BRIDELANCE J, LIBERT C, et al. Selective glucocorticoid receptor modulation: new directions with non-steroidal scaffolds[J]. Pharmacology and Therapeutics, 2015, 152: 28-41.
[29] LI L, BONNETON F, CHEN X Y, et al. Botanical compounds and their regulation of nuclear receptor action: the case of traditional Chinese medicine[J]. Molecular and Cellular Endocrinology, 2015, 401: 221-237.
[30] LING C Q, LI Y, ZHU X Y, et al. Ginsenosides may reverse the dexamethasone-induced down-regulation of glucocorticoid receptor[J]. General and Comparative Endocrinology, 2005,140(3):203-209.
[31] SUN X J, DENG X H, CAI W J, et al. Icariin inhibits LPS-induced cell inflammatory response by promoting GRα nuclear translocation and upregulating GRα expression[J]. Life Sciences, 2018, 195: 33-43.
[32] LIU H S, SHI H L, HUANG F, et al. Astragaloside IV inhibits microglia activation via glucocorticoid receptor mediated signaling pathway[J]. Scientific Reports, 2016, 6: 19137:1-14.
[33] RIGDEN D J, FERNáNDEZ X M. The 2021 nucleic acids research database issue and the online molecular biology database collection[J]. Nucleic Acids Research, 2021, 49: D1-D9.
[34] ACKLAND M L, VAN DE WAARSENBURG S, JONES R. Synergistic antiproliferative action of the flavonols quercetin and kaempferol in cultured human cancer cell lines[J]. In Vivo, 2005, 19(1): 69-76.