|本期目录/Table of Contents|

[1]聂 震,季 凯,姜兴茂*.气溶胶法制备纳米Ni@SiO2及其对肉桂醛催化加氢的研究[J].武汉工程大学学报,2024,46(02):125-129.[doi:10.19843/j.cnki.CN42-1779/TQ.202009006]
 NIE Zhen,JI Kai,JIANG Xingmao*.Aerosol synthesis of nano Ni@SiO2 and its catalytic hydrogenation ofcinnamaldehyde[J].Journal of Wuhan Institute of Technology,2024,46(02):125-129.[doi:10.19843/j.cnki.CN42-1779/TQ.202009006]
点击复制

气溶胶法制备纳米Ni@SiO2及其对肉桂醛催化加氢的研究(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
46
期数:
2024年02期
页码:
125-129
栏目:
化学与化学工程
出版日期:
2024-04-28

文章信息/Info

Title:
Aerosol synthesis of nano Ni@SiO2 and its catalytic hydrogenation of
cinnamaldehyde
文章编号:
1674 - 2869(2024)02 - 0125 - 05
作者:
聂 震季 凯姜兴茂*
湖北省新能源材料工程技术研究中心,绿色化工过程省部共建教育部重点实验室,湖北省新型反应器与绿色化学工艺重点实验室,武汉工程大学化工与制药学院,湖北 武汉 430205
Author(s):
NIE Zhen JI Kai JIANG Xingmao*
Hubei Provincial Research Centre of Engineering & Technology for New Energy Materials, Hubei Key Lab of Novel Reactor & Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
关键词:
Ni@SiO2气溶胶法肉桂醛加氢
Keywords:
Ni@SiO2 aerosol method cinnamaldehyde hydrogenation
分类号:
TQ032
DOI:
10.19843/j.cnki.CN42-1779/TQ.202009006
文献标志码:
A
摘要:
通过气溶胶方法喷雾热解制备出了具有“火龙果型”结构的Ni@SiO2纳米颗粒催化剂。载体硅球与金属纳米颗粒的单分散性良好。通过X射线衍射、透射电子显微镜、氮气物理吸附仪等表征手段对样品进行检测。可以得到平均比表面积约340?m2/g,平均孔径约3.4?nm,平均孔容约0.16?cm3/g的Ni@SiO2催化剂颗粒。其中载体二氧化硅球粒径分布于50~500?nm,金属Ni颗粒粒径分布于2~6?nm。作为催化剂进行肉桂醛催化加氢实验,以气相色谱作为检测方式,当溶剂为异丙醇,温度为160?℃,氢气压力为2?MPa,反应时间为2 h时,所得肉桂醛转化率为98.5%,苯丙醛收率为76.8%。

Abstract:
A Ni@SiO2 nanoparticle catalyst with a "pitaya" structure was prepared by aerosol spray pyrolysis. The carrier silicon spheres and metal nanoparticles have good monodispersity. The samples were characterized by X-ray diffraction, transmission electron microscopy, nitrogen physical adsorption and other methods. The obtained Ni@SiO2 catalyst particles have an average specific surface area of about 340?m2/g, an average pore size of about 3.4?nm, and an average pore volume of about 0.16?cm3/g. The particle size of the carrier silica spheres is distributed between 50-500?nm, and that of Ni particles is between 2-6 nm.?Ni@SiO2 was used as the catalyst for catalytic hydrogenation of cinnamaldehyde, and gas chromatography was used as the detection method. Under the conditions where the solvent was isopropanol, temperature was 160?℃, hydrogen pressure was 2 MPa, and reaction time was 2 hours, the cinnamaldehyde conversion rate obtained was 98.5%, and the phenylpropionaldehyde yield was 76.8%.

参考文献/References:

[1] HANDJANI S, MARCEAU E, BLANCHARD J, et al. Influence of the support composition and acidity on the catalytic properties of mesoporous SBA-15, Al-SBA-15, and Al2O3-supported Pt catalysts for cinnamaldehyde hydrogenation[J]. Journal of Catalysis, 2011, 282(1): 228-236.

[2] GALLEZOT P, RICHARD D. Selective hydrogenation of α,β-unsaturated aldehydes[J]. Catalysis Reviews, 1998, 40(1/2): 81-126.
[3] ZHOU Z Q, MA Q, ZHANG A Q, et al. Synthesis of water-soluble monotosylated ethylenediamines and their application in ruthenium and iridium-catalyzed transfer hydrogenation of aldehydes[J]. Applied Organometallic Chemistry, 2011, 25(12): 856-861.
[4] M?KI-ARVELA P, HáJEK J, SALMI T, et al. Chemoselective hydrogenation of carbonyl compounds over heterogeneous catalysts[J]. Applied Catalysis A General, 2005, 292: 1-49.
[5] KENNEDY R M, CROSBY L A, DING K, et al. Replication of SMSI via ALD: TiO2 overcoats increase Pt-catalyzed acrolein hydrogenation selectivity[J]. Catalysis Letters, 2018, 148(8): 2223-2232.
[6] IDE M S, HAO B, NEUROCK M, et al. Mechanistic insights on the hydrogenation of α,β-unsaturated ketones and aldehydes to unsaturated alcohols over metal catalysts[J]. ACS Catalysis,2012,2(4):671-683.
[7] FUJITA S-I, AKIHARA S, ARAI M. Recyclability of water-soluble ruthenium-phosphine complex catalysts in multiphase selective hydrogenation of cinnamaldehyde using toluene and pressurized carbon dioxide[J]. Journal of Molecular Catalysis, A.Chemical, 2006, 249(1):223-229.
[8] VU K B, BUKHRYAKOV K V, ANJUM D H , et al. Surface-bound ligands modulate chemoselectivity and activity of a bimetallic nanoparticle catalyst[J]. ACS Catalysis, 2015, 5(4): 2529-2533.
[9] GONG X,?SHI Q Q,?ZHANG X Y, et al. Synergistic effects of PtFe/CeO2 catalysts afford high catalytic performance in selective hydrogenation of cinnamaldehyde[J]. Journal of Rare Earths, 2023,41(2):233-239.
[10] TIAN H, ZHAO H B, CAO X J. Catalytic transfer hydrogenation of 7-ketolithocholic acid to ursodeoxycholic acid with raney nickel [J]. Journal of Industrial & Engineering Chemistry,2013,19(2): 606-613.
[11] XUE Y P, WANG Y P, XU Z, et al. Chemoenzymatic synthesis of gabapentin by combining nitrilase-mediated hydrolysis with hydrogenation over raney-nickel[J]. Catalysis Communications, 2015, 66: 121-125.
[12] JOUBERT J, DELBECQ F, COPERET C, et al. Gamma-alumina: an active support to obtain immobilized electron poor Zr complexes[J]. Topics in Catalysis, 2008, 48(1/2/3/4): 114-119.
[13] LIU B L, YANG B, SUN M Y, et al. Preparation of a Pt/active carbon fiber catalyst and its application in the synthesis of p-chloroaniline with catalytic hydrogenation[J]. Journal of Nanoscience and Nanotechnolnology, 2019, 19(7): 3879-3886.
[14] CARTA M,?SANNA A L,?PORCHEDDU A, et al. Mechanochemical effects underlying the mechanically activated catalytic hydrogenation of carbon monoxide[J].Scientific Reports,2023,13(1):?2470.
[15] BRINKER C J, LU Y F, SELLINGER A, et al. Evaporation-induced self-assembly: nanostructures made easy[J]. Advanced Materials, 1999, 11(7): 579-585.
[16] BRINKER C J. Evaporation-induced self-assembly: functional nanostructures made easy[J]. Mrs Bulletin, 2004, 29(9): 631-640.
[17] OGI T, HIDAYAT D, ISKANDAR F, et al. Direct synthesis of highly crystalline transparent conducting oxide nanoparticles by low pressure spray pyrolysis[J]. Advanced Powder Technology, 2009, 20(2): 203-209.

相似文献/References:

[1]陈 凡,刘向宇,姜兴茂,等.粒径可控的TeO2纳米颗粒合成及其抗耐药菌活性研究[J].武汉工程大学学报,2020,42(05):473.[doi:10.19843/j.cnki.CN42-1779/TQ.202002019]
 CHEN Fan,LIU Xiangyu,JIANG Xingmao,et al.Controllable Synthesis of TeO2 Nanoparticles and Its Antibacterial Effect on Drug-Resistance Bacteria[J].Journal of Wuhan Institute of Technology,2020,42(02):473.[doi:10.19843/j.cnki.CN42-1779/TQ.202002019]
[2]季 凯,刘清晨,许梓欣,等.气溶胶法制备纳米黑色TiO2颗粒及其光催化降解四环素的研究[J].武汉工程大学学报,2021,43(04):367.[doi:10.19843/j.cnki.CN42-1779/TQ. 202012029]
 JI Kai,LIU Qingchen,XU Zixin,et al.Aerosol Assisted Synthesis of Nano Black TiO2 for Photocatalytic Degradation of Tetracycline[J].Journal of Wuhan Institute of Technology,2021,43(02):367.[doi:10.19843/j.cnki.CN42-1779/TQ. 202012029]

备注/Memo

备注/Memo:
收稿日期:2020-09-14
基金项目:国家自然科学基金 (21878237);武汉市应用基础前沿项目(2108010401011291)
作者简介:聂 震,硕士。Email: [email protected]
*通信作者:姜兴茂,博士,教授。Email: [email protected]
引文格式:聂震,季凯,姜兴茂. 气溶胶法制备纳米Ni@SiO2及其对肉桂醛催化加氢的研究[J]. 武汉工程大学学报,2024,46(2):125-129,136.
更新日期/Last Update: 2024-05-01