[2] ZHOU C C. Lung cancer molecular epidemiology in China:recent trends[J]. Translational Lung Cancer Research,2014,3(5):270-279.
[3] GOODGAME B,VISWANATHAN A,MILLER C R, et al. A clinical model to estimate recurrence risk in resected stage I non-small cell lung cancer[J]. American Journal of Clinical Oncology,2008,31(1):22-28.
[4] 余显学. 基于基因表达数据的癌症亚型发现双聚类方法研究[D]. 重庆:西南大学,2018.
[5] MALLICK P K,MOHAPATRA S K,CHAE G S,et al. Convergent learning-based model for leukemia classification from gene expression[J]. Personal and Ubiquitous Computing,2023,27(3):1103-1110.
[6] XU Q,CHEN Y R. An aging-related gene signature-based model for risk stratification and prognosis prediction in lung adenocarcinoma[J]. Frontiers in Cell and Developmental Biology,2021,9:685379.
[7] NAEEM A,KHAN A H,AYUBI S U D,et al. Predicting the metastasis ability of prostate cancer using machine learning classifiers[J]. Journal of Computing & Biomedical Informatics,2023,4(2):1-7.
[8] AHMED Z. Practicing precision medicine with intelligently integrative clinical and multi-omics data analysis[J]. Human Genomics,2020,14(1):35.
[9] ZARAYENEH N,KO E,OH J H,et al. Integration of multi-omics data for integrative gene regulatory network inference[J]. International Journal of Data Mining and Bioinformatics,2017,18(3):223-239.
[10] RAPPOPORT N,SAFRA R,SHAMIR R. MONET:multi-omic module discovery by omic selection[J]. PLOS Computational Biology,2020,16(9):1008182.
[11] TINI G, MARCHETTI L, PRIAMI C, et al. Multi-omics integration—a comparison of unsupervised clustering methodologies[J]. Briefings in Bioinformatics,2019,20(4):1269-1279.
[12] TOMCZAK K,CZERWI?SKA P,WIZNEROWICZ M. The cancer genome atlas(TCGA):an immeasurable source of knowledge[J]. Contemporary Oncology,2015,19(1A):68-77.
[13] JENSEN M A, FERRETTI V, GROSSMAN R L,et al. The NCI genomic data commons as an engine for precision medicine[J]. Blood,2017,130(4):453-459.
[14] TROYANSKAYA O,CANTOR M,SHERLOCK G,et al. Missing value estimation methods for DNA microarrays[J]. Bioinformatics,2001,17(6):520-525.
[15] WOLD S,ESBENSEN K,GELADI P. Principal component analysis[J]. Chemometrics and Intelligent Laboratory Systems,1987,2(1/2/3):37-52.
[16] VAN DER MAATEN L,HINTON G. Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008,9(11):2579-2605.
[17] BECHT E,MCINNES L,HEALY J,et al. Dimensionality reduction for visualizing single-cell data using UMAP[J]. Nature Biotechnology,2019,37(1):38-44.
[18] PICARD M,SCOTT-BOYER M P,BODEIN A,et al. Integration strategies of multi-omics data for machine learning analysis[J]. Computational and Structural Biotechnology Journal,2021,19:3735-3747.
[19] HINTON G E,SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science,2006,313(5786):504-507.
[20] 张健,丁世飞,张楠,等. 受限玻尔兹曼机研究综述[J]. 软件学报,2019,30(7):2073-2090.
[21] VINCENT P, LAROCHELLE H, LAJOIE I, et al. Stacked denoising autoencoders:learning useful representations in a deep network with a local denoising criterion[J]. Journal of Machine Learning Research,2010,11(12):3371-3408.
[22] HUANG S Y,YEH Y R,EGUCHI S. Robust kernel principal component analysis[J]. Neural Computation, 2009,21(11):3179-3213.
[23] LAI P L, FYFE C. Kernel and nonlinear canonical correlation analysis[J]. International Journal of Neural Systems,2000,10(5):365-377.
[24] BELKIN M,NIYOGI P. Laplacian eigenmaps for dimensionality reduction and data representation[J]. Neural Computation,2003,15(6):1373-1396.
[25] 班伟. 受试者工作特征曲线评估血清β2-MG、CEA、CA125、NSE、CYFRA21-1联合诊断早期肺癌价值[J].吉林医学,2022,43(5):1384-1386.
[26] TANG W,HU J,ZHANG H,et al. Kappa coefficient:a popular measure of rater agreement[J]. Shanghai Archives of Psychiatry,2015,27(1):62-67.