|本期目录/Table of Contents|

[1]程乐航,林志东*.Co3O4纳米棒的制备及其室温气敏性能研究[J].武汉工程大学学报,2024,46(05):516-521.[doi:10.19843/j.cnki.CN42-1779/TQ.202311005]
 CHENG Lehang,LIN Zhidong*.Preparation of Co3O4 nanorods and their gas-sensitivity performance atroom temperature[J].Journal of Wuhan Institute of Technology,2024,46(05):516-521.[doi:10.19843/j.cnki.CN42-1779/TQ.202311005]
点击复制

Co3O4纳米棒的制备及其室温气敏性能研究(/HTML)
分享到:

《武汉工程大学学报》[ISSN:1674-2869/CN:42-1779/TQ]

卷:
46
期数:
2024年05期
页码:
516-521
栏目:
材料科学与工程
出版日期:
2024-10-28

文章信息/Info

Title:
Preparation of Co3O4 nanorods and their gas-sensitivity performance at
room temperature
文章编号:
1674 - 2869(2024)05 - 0516 - 06
作者:
程乐航林志东*
等离子体化学与新材料湖北省重点实验室(武汉工程大学),湖北 武汉 430205
Author(s):
CHENG LehangLIN Zhidong*
Hubei Key Laboratory of Plasma Chemistry and Advanced Materials(Wuhan Institute of Technology),Wuhan 430205,China
关键词:
四氧化三钴气敏性室温纳米材料乙醇臭氧
Keywords:
tricobalt tetraoxide gas sensitivity room temperature nanomaterials ethanol ozone
分类号:
TP212.2
DOI:
10.19843/j.cnki.CN42-1779/TQ.202311005
文献标志码:
A
摘要:
以Co(NO)3·6H2O为钴源,CO(NH2)2为沉降剂,聚乙烯吡咯烷酮为分散剂,NH4F为前驱体氟源,通过水热法制备了Co3O4纳米棒,并以此制备旁热式气敏元件。X射线衍射和场发射扫描电子显微镜对材料的晶体结构特征、晶粒尺寸、形貌的表征结果显示,Co3O4为多孔纳米棒,其晶粒尺寸为22.2 nm,颗粒尺寸在35~69 nm之间,长约4.7 μm,直径范围为220~300 nm,长径比为15.7~21.4。气敏测试结果表明,在80 ℃下,Co3O4纳米棒气敏元件对0.1 g/L乙醇的灵敏度为465.43,在25 ℃下仅为2.14。引入0.02 g/L臭氧(O3)作为环境气体时,在80 ℃下气敏元件灵敏度提高到923.16,在25 ℃下提高到7.64。该气敏元件的恢复过程可采用交替切换O3与测试气体的方式在3 min内完成,实现了室温下元件气敏检测的可重复性。O3的引入,在室温下实现了Co3O4气敏元件对乙醇的气敏检测。
Abstract:
Using Co(NO)3·6H2O as the cobalt source,CO(NH2)2 as the precipitant,polyvinylpyrrolidone as the dispersant,and NH4F as the precursor fluoride source,Co3O4 nanorods were prepared via a hydrothermal method,followed by the fabrication of a calorimetric gas sensor. Based on the characterization results from X-ray diffraction and field emission scanning electron microscopy regarding the material’s crystal structure,grain size,and morphology, the Co3O4 exhibited nanorods were porous with a grain size of 22.2 nm,particle sizes ranging from 35 to 69 nm,a length of approximately 4.7 μm,diameter range of 220 to 300 nm,and an aspect ratio between 15.7 and 21.4. Gas sensing tests revealed that at 80 ℃,the gas sensing element based on the Co3O4 nanorods exhibited a sensitivity of 465.43 towards 0.1 g/L ethanol, while at 25 ℃, it was only 2.14. Introducing 0.02 g/L ozone (O3) as ambient gas increased the sensitivity of the gas sensor to 923.16 at 80 ℃ and 7.64 at 25 ℃,showing enhanced performance. The recovery process of the gas sensor could be achieved within 3 minutes by alternately switching between O3 and the test gas, demonstrating the repeatability of gas sensing detection at room temperature. The introduction of O3 enabled the Co3O4 gas sensor to detect ethanol sensitively at room temperature.

参考文献/References:

[1] BEHERA B, CHANDRA S. A MEMS based acetone sensor incorporating ZnO nanowires synthesized by wet oxidation of Zn film [J]. Journal of Micromechanics and Microengineering,2015,25(1):015007.

[2] WANG Y L, JIANG X C, XIA Y N. A solution-phase,precursor route to polycrystalline SnO2 nanowires that can be used for gas sensing under ambient conditions [J]. Journal of the American Chemical Society,2003,125(52):16176-16177.
[3] LI F,XU J Q,YU X H, et al. One-step solid-state reaction synthesis and gas sensing property of tin oxide nanoparticles [J]. Sensors and Actuators B:Chemical,2002,81(2/3):165-169.
[4] PISAREV R V,PAVLOV V V,KALASHNIKOVA A M,et al. Near-band gap electronic structure of the tetragonal rare-earth cuprates R2CuO4 and the bismuth cuprate Bi2CuO4 [J]. Physical Review B,2010,82(22):224502.
[5] NERI G, BONAVITA A,RIZZO G, et al. Methanol gas-sensing properties of CeO2-Fe2O3 thin films [J]. Sensors and Actuators B:Chemical,2006,114(2):687-695.
[6] FUJITA S,SUZUKI K,MORI T. Preparation of high-performance Co3O4 catalyst for hydrocarbon combustion from Co-containing hydrogarnet [J]. Catalysis Letters,2003,86(1/2/3):139-144.
[7] LI W Y, XU L N, CHEN J. Co3O4 nanomaterials in lithium-ion batteries and gas sensors [J]. Advanced Functional Materials,2005,15(5):851-857.
[8] LOU X W,DENG D,LEE J Y,et al. Self-supported formation of needlelike Co3O4 nanotubes and their application as lithium-ion battery electrodes [J]. Advanced Materials,2008,20(2):258-262.
[9] 罗海彬,曹庆成,覃远航.Co掺杂ZIF-8衍生合成高效Co-N-C氧还原催化剂的研究[J].武汉工程大学学报,2023,45(1):35-41.
[10] KOLMAKOV A,MOSKOVITS M. Chemical sensing and catalysis by one-dimensional metal-oxide nanostructures [J]. Annual Review of Materials Research,2004,34:151-180.
[11] WEN Z,ZHU L P,MEI W M,et al. A facile fluorine-mediated hydrothermal route to controlled synthesis of rhombus-shaped Co3O4 nanorod arrays and their application in gas sensing [J]. Journal of Materials Chemistry A,2013,1(25):7511-7518.
[12] PANG X B, SHAW M D, LEWIS A C, et al. Electrochemical ozone sensors:a miniaturised alternative for ozone measurements in laboratory experiments and air-quality monitoring [J]. Sensors and Actuators B: Chemical,2017,240:829-837.
[13] GONG S Y,LI W H,XIE Z, et al. Low temperature decomposition of ozone by facilely synthesized cuprous oxide catalyst [J]. New Journal of Chemistry,2017,41(12):4828-4834.
[14] BAKSHI M S. How surfactants control crystal growth of nanomaterials [J]. Crystal Growth & Design,2016,16(2):1104-1133.
[15] 贺胜,林志东.纳米Co3O4的制备及其臭氧辅助下对乙醇的气敏性能[J].武汉工程大学学报,2021,43(6):622-625,631.
[16] CHENG L H,WANG Y K, LIN Z D, et al. Preparation and morphology controlling of Co3O4 nanostructures and their gas-sensing properties [J]. MRS Communications,2024,14(3):356-362.
[17] WANG W C, TIAN Y T, WANG X C, et al. Ethanol sensing properties of porous ZnO spheres via hydrothermal route [J]. Journal of Materials Science,2013,48(8):3232-3238.
[18] CHEN Z W, LIN Z D, XU M Y, et al. Effect of gas sensing properties by Sn-Rh codoped ZnO nanosheets [J]. Electronic Materials Letters,2016,12(3):343-349.
[19] 谭依玲,李诗纯,杨希,等. 金属氧化物半导体气敏材料抗湿性能提升策略[J]. 化学进展,2022,34(8):1784-1795.
[20] CAO R R,LI L X,ZHANG P Y,et al. Regulating oxygen vacancies in ultrathin δ-MnO2 nanosheets with superior activity for gaseous ozone decomposition [J]. Environmental Science:Nano,2021,8(6):1628-1641.
[21] KIM H J,LEE J H. Highly sensitive and selective gas sensors using p-type oxide semiconductors:overview [J]. Sensors & Actuators B:Chemical,2014,192:607-627.
[22] HU J,GUAN W W,XIONG X Q,et al. Modulation of rGO-Co3O4 heterojunction with multi-walled carbon nanotubes for efficient ethanol detection [J]. Sensors and Actuators B:Chemical,2022,368:132202.
[23] KOZIEJ D, THOMAS K, BARSAN N, et al. Influence of annealing temperature on the CO sensing mechanism for tin dioxide based sensors:operando studies [J]. Catalysis Today,2007,126(1/2):211-218.
[24] LIU L M,WANG H H,ZHANG X W,et al. Synthesis of novel RuO2/NaBi(MoO4)2 nanosheets composite and its gas sensing performances towards ethanol [J]. Sensors and Actuators B:Chemical,2016,237:275-283.

相似文献/References:

[1]付萍,林志东.Ag+掺杂TiO2SnO2基纳米复合材料气敏性能[J].武汉工程大学学报,2010,(07):71.[doi:10.3969/j.issn.16742869.2010.07.018]
 FU Ping,LIN Zhi dong.Study of gassensing properties of Ag+doped TiO2SnO2 composite nano materials[J].Journal of Wuhan Institute of Technology,2010,(05):71.[doi:10.3969/j.issn.16742869.2010.07.018]
[2]贺 胜,林志东*.纳米Co3O4的制备及其臭氧辅助下对乙醇的气敏性能[J].武汉工程大学学报,2021,43(06):622.[doi:10.19843/j.cnki.CN42-1779/TQ.202009019]
 HE Sheng,LIN Zhidong*.Preparation of Nano-Co3O4 and Gas-Sensitive Properties of Ethanol with Aid of Ozone[J].Journal of Wuhan Institute of Technology,2021,43(05):622.[doi:10.19843/j.cnki.CN42-1779/TQ.202009019]

备注/Memo

备注/Memo:
收稿日期:2023-11-09
基金项目:武汉工程大学第十四届研究生教育创新基金(CX2022260)
作者简介:程乐航,硕士研究生。Email:[email protected]
*通信作者:林志东,博士,教授。Email:[email protected]
引文格式:程乐航,林志东. Co3O4纳米棒的制备及其室温气敏性能研究[J]. 武汉工程大学学报,2024,46(5):516-521.
更新日期/Last Update: 2024-10-26