《武汉工程大学学报》  2009年09期 16-19   出版日期:2009-09-28   ISSN:1674-2869   CN:42-1779/TQ
用键参数函数法研究卤代甲烷的热力学性质



0引言随着科技的进步,对热力学性质的估算,越来越受到人们的关注[1].迄今为止,化合物理化性质数据的获得主要来自于实验[2],但是化合物的数量惊人,而且测量一个参数往往需要花费很多的财力,人力,人们不可能逐个测量,再有制备某个纯样品,也不是一件简单的事情,而且对于测量上有困难或尚未合成的化合物,如何找出结构与性质之间的定量关系也是亟待解决的问题 [2].所以建立直观简单有效的估算方法,在理论和实际的研究应用中具有重要的意义[34].因而研究化合物的热力学性质的文献特别多,但是研究卤代甲烷的热力学性质,相关的文献非常少,有研究也最多研究40种卤代甲烷的一种热力学性质.本研究根据化合物的性质主要取决于各组成原子的电负性和各个原子之间的键长,但是用两者分别关联卤代甲烷的热力学性质,相关性较差,因而考虑把两者结合起来,构建键参数并关联卤代甲烷的四种热力学性质,使相关性大大提高了,而且取得了较好的效果.1键参数的构建方法(1)键参数X的构建方法:X为除碳以外的基团电负性:X=4/∑ (v/x),v为原子的个数,x为原子的电负性.(2)键参数B的构建方法:B=∑(一个卤代甲烷分子四个键的键长).CCl2Br2的X和B的计算方法如下:x(Cl)=3.16,x(Br)=2.96,X=4/(2/3.16+2/2.96)=3.056 7;C—Cl的键长=88.1 pm,C—Br的键长=95.6 pm,B=88.1*2+95.6*2=367.4(pm).按上述构建方法计算出的70种卤代甲烷的键参数X、B的值和标准生成焓△fH0m,标准吉布斯自由能△fG0m,标准熵S0m,等压热容Cp 的实验数值列于表1.表170种卤代甲烷的热力学性质
Table 170 kinds of thermodynamic properties of halogenated Methane
No.compoundXB△fH0m [5]/
(kJ/mol)△fG0m [5]/
(kJ/mol)S0m [5]/
(J/kmol)Cp[5]/
(J/kmol)1Tetrabromomethane2.96382.450.20835.913358.10591.1812Bromotriiodomethane2.729 4410.9275233.494395.2794.4973Dibromodiiodomethane2.802 1401.4220186.705385.76594.3014Tribromoiodomethane2.878 9391.9170144.302378.31992.1185Tetrachloromethane3.16352.4-100.416-58.154310.22883.4046Chlorotribromomethane3.007 5374.96561.423357.6189.2687Dichlorodibromomethane3.056 7367.41019.715348.48487.0178Trichlorobromomethane3.107 5359.9-43-18.27333.57485.1669Chlorobromodiiodomethane2.844 7393.9170148.293382.3591.69510Chlorodibromoiodomethane2.923 8384.4115101.368373.30290.50611Dichlorobromoiodomethane2.970 4376.96060.334361.91288.48512Chlorotriiodomethane2.769 7403.4225196.986385.46692.47713Dichlorodiiodomethane2.888 7386.4115109.904362.0990.08314Trichloroiodomethane3.018 2369.41027.257340.60586.46515Tetrafluoromethane3.9282.4-933.199-888.502261.41761.1316Fluorotribromomethane3.149 9357.4-120-123.061345.71984.21717Difluorodibromomethane3.365 6332.4-380-369.464325.40876.9518Trifluorobromomethane3.613 4307.4-648.8-622.459297.88969.21119Fluorobromodiiodomethane2.971 8376.4-15-37.061373.22787.09720Fluorodibromoiodomethane2.556 9366.9-70-84.57366.28585.67821Difluorobromoiodomethane3.261 3341.9-325-324.974342.62378.20322Fluorotrichloromethane3.317334.9-285-245.634309.77978.02123Difuorodichloromethane3.491 3317.4-486-447.017300.90372.4224Trifluorochloromethane3.684 3299.9-707.8-667.23285.41966.82525Fluorochlorodibromomethane3.203 6349.9-175-166.704343.0882.29626Fluorodichlorobromomethane3.259 7342.4-235-215.492330.76780.06127Difluorochlorobromomethane3.427 3324.9-435-408.87318.71974.59728Fluorochlorobromoiodomethane3.109359.4-125-125.204353.55683.72329Fluorochlorodiiodomethane3.019 6368.9-70-77.23359.08984.98130Fluorodichloroiodomethane3.161 6351.9-180-166.057341.5681.63831Difluorochloroiodomethane3.319334.4-380-365.371329.09976.53732Fluorotriiodomethane2.89385.94517.616373.19688.28733Difluorodiiodomethane3.163 1351.4-260-266.508346.50780.42934Trifluoroiodomethane3.493 1316.4-589.2-571.244307.77870.93635Methane2.2214.4-74.873-50.757186.21435.64536Tribromomethane2.724 8340.46050.676330.68970.94937Dibromomethane2.524 1298.4108.57293.42654.5438Bromomethane2.351 1256.4-36.4-26.873245.91342.421第9期赵鹏,等:用键参数函数法研究卤代甲烷的热力学性质
武汉工程大学学报第31卷
39Bromodiiodomethane2.590 5359.4165137.625355.14373.59140Dibromoiodomethane2.655 9349.911090.379347.16972.55541Bromoiodomethane2.465307.96049.12307.08756.07242Trichloromethane2.849317.9-101.253-68.455295.75165.80643Dichloromethane2.594 2283.4-95.521-68.911270.28750.8744Chloromethane2.381248.9-86.316-62.84234.58140.69345Chlorodibromomethane2.764 9332.91012.036328.0269.10546Dichlorobromomethane2.806 6325.4-45-42.731316.47367.3547Chlorobromomethane2.558 7290.9-45-20.249287.28552.68248Chlorobromoiodomethane2.694 1342.46053.655338.09572.34549Chlorodiiodomethane2.626 7351.911096.874342.80671.57150Dichloroiodomethane2.733 5334.9513.303324.11968.90551Chloroiodomethane2.497 8300.458.131295.54754.17852Trifluoromethane3.268 8265.4-696.7-662.234259.67451.01453Difluoromethane2.813 3248.4-452.2-424.619246.70742.84154Fluoromethane2.469 3231.4-255-231.048222.82237.48455Fluorodibromomethane2.884 8315.4-175-172.684316.91864.8756Difluorobromomethane3.064 9290.4-422-416.426295.25558.71657Fluorobromomethane2.661273.4-215-193.025276.22749.04758Fluorobromoiodomethane2.807 8324.9-120-125.551325.27367.31459Fluorodichloromethane2.976 6300.4-280-249.502293.30360.95860Difluorochloromethane3.115 8282.9-475-454.589280.91655.80161Fluorochloromethane2.699 2265.9-270-233.92264.42147.00262Fluorochlorobromomethane2.930 4307.9-230-215.255310.68662.5263Fluorochloroiodomethane2.850 4317.4-175-166.326313.01465.04964Fluorodiiodomethane2.734 7334.4-65-78.148332.7267.15265Difluoroiodomethane2.978299.9-365-357.234305.960.8866Fluoroiodomethane2.595 2282.9-165-162.13286.26450.2667Triiodomethane2.528 1368.9220187.128355.54774.78168Diiodomethane2.408 5317.4121103.891309.94657.67869Iodomethane2.299 6265.914.416.167253.90644.04770Tetraiododemethane2.66420.4340294.125391.89195.6872键参数与卤代甲烷热力学性质的
相关性[6](1)与标准生成焓△fH0m的热力学相关性为△fH0m=2 288.081-1 317.707X-2.614B+2.369X1(10)n=70,r=0.983,F=625.580,s=47.720(2)与标准吉布斯自由能△fG0m的热力学相关性为△fG0m =2 530.936-1 362.756X-3.699B+2.630X1(20)n=70,r=0.980,F=446.225,s=52.570 (3) 与标准熵S0m的热力学相关性为S0m=-193.073+74.456X+1.631B-0.251X1(30)n=70,r=0.982,F=593.918,s=8.381(4) 与等压热容Cp的热力学相关性为
Cp=54.917-34.547X-0.073B+0.146X1(40)n=70,r=0.995,F=2348.720,s=1.579式中,n为回归样本数,r为相关系数,F为Fischer检验,s为标准误差.X1=X*B.3卤代甲烷的实验值与预测值的对
划图
图1标准生成焓的实验值与预测值的比较
Fig.1Standard enthalpy of formation of experimental data and prediction图2标准吉布斯自由能的实验值与预测值的比较
Fig.2Standard Gibbs free energy of the experimental data and prediction图3标准熵的实验值与预测值的比较
Fig.3Standard entropy of the experimental data and prediction图4等压热容的实验值与预测值的比较
Fig.4Isobaric heat capacity of the experimental data and prediction以上四幅图分别近似成直线,说明预测值与实验值非常接近.4结果与讨论本研究用键参数X、B关联了70种卤代甲烷的标准生成焓,标准吉布斯自由能、标准熵、等压热容等的热力学性质.相关系数均在0.98(>095)以上,具有良级相关性.预测值与实验值非常接近,用式(10)、(20)、(30)、(40)分别计算出的预测值与实验值的相对误差分别为:2.20%,306%,0.06%,0.04%,均小于5%,在实验误差范围之内.通过线性拟合得到的线性方程对推测其他未知的卤代甲烷及简单的卤代烷的热力学性质,具有重要意义.由于卤代甲烷在298.15 ℃时,有的卤代甲烷只存在气态,有的则存在气、液两种状态,为了取得更完整的数据,本文所取得的热力学参数均为卤代甲烷在气体状态时的热力学数值.文献[6]仅关联了40种卤代甲烷的标准生成焓一种热力学性质,相关系数为0.985.文献[7]关联了41种卤代甲烷的标准生成焓,相关系数为0.985.而本文关联了70种卤代甲烷的标准生成焓、标准吉布斯自由能、标准熵、等压热容等四种热力学性质,相关系数达到0.983.t检验和F检验都通过.到目前为止,关于卤代甲烷的标准吉布斯自由能,标准熵,及等压热容等的热力学性质,还未见报道.说明该方法具有一定的科学性、合理性.根据式(10)、(20)、(30)、(40)给出的计算值与其实验值基本吻合,但也存在少数几个误差较大.究其原因中主要有:(1)实验值本身存在一定的误差.因为实验值有一定的误差范围,这无形中加大了预测值的误差.(2)键参数函数法本身固有的缺陷所带来的误差.这是因为键参数函数法仅关联了影响化合物性质的主要因素,而其他因素对化合物的影响没有考虑在内,如键角,键级,键矩,键能等,均没有考虑在内,必然会产生一定的误差[910].(3)参数X、B的选择都是经验性的,例如X、B分别与卤代甲烷的热力学性质关联,相关性特别低,但把两者结合起来,相关性则大大提高了.所以预测值与实验值的误差是在所难免的[11].本研究结果中键参数只与热容的相关性达到了优级,与其他三种的热力学性质均只达到良级相关,有待进一步改进.