《武汉工程大学学报》 2016年4期
327-328
出版日期:2016-08-28
ISSN:1674-2869
CN:42-1779/TQ
新型异喹啉衍生物的合成
1 引 言含有异喹啉类结构的衍生物是一类非常重要的医药、农药及化工类中间体. 很多重要的药物含有异喹啉结构的结构单元,如一些含异喹啉类的生物碱类,同时也发现异喹啉衍生物具有广泛的生物活性,如抗肿瘤,抗菌、镇痛、调节免疫功能、抗血小板凝集、抗心律失常、降压等[1-2]. 但是目前文献报道相关异喹啉衍生物的合成方法比较少[3-7],因此异喹啉类衍生物的研究具有重要的学术价值和药学价值. 1,2,3-三唑稠杂环化合物也是一类非常重要的杂环化合物,在很多领域都有广泛的应用. 但1,2,3-三唑稠杂环化合物的合成非常少见,绝大部分合成1,2,3-三唑稠杂环化合物是基于分子内的CuAAC反应、RuAAC反应等Huisgen环加成,但是这需要在分子中同时引入炔基和叠氮部分,在合成上受到了很大的限制. 本课题组已经做了大量的NH-1,2,3-三唑的合成研究,并在此基础上开发了两种合成1,2,3-三唑稠杂环化合物的方法. 一是以功能化的NH-1,2,3-三唑为底物,采用金属催化后环合来合成一类新颖的1,2,3-三唑稠杂环化合物[8]. 二是同时在苯环邻位引入两个端炔,再发生环加成反应得到1,2,3-三唑稠杂环化合物的方法[9]. 并且在对1,2,3-三唑稠杂环化合物的研究过程中,通过对1,2,3-三唑稠杂环化合物进行加热分解开环得到了一种新型的异喹啉衍生物[10]. 本实验首先以双炔基取代的苯类化合物和叠氮化钠在铜盐的催化下无氧反应生成1,2,3-三唑稠杂环,再对1,2,3-三唑稠杂环化合物进行开环反应研究,合成了一类含有酯基的异喹啉类衍生物,以期从中寻找到具有一定生物活性的异喹啉类衍生物,合成路线如图1所示. 2 实验部分2.1 仪器与试剂所用试剂均为分析纯,从天津市富宇精细化工有限公司购得;所用柱层层析硅胶从青岛谱科分离材料有限公司购得;反应过程中采用薄层色谱分析法跟踪监测,硅胶板型号为GF254,从青岛海洋化工厂购得. 2.2 化合物的合成2.2.1 化合物1a的合成 1a:取黄色油状物1,2-双(苯基乙炔基)苯211 mg (0.76 mmol) 加入到100 mL圆底烧瓶中,再称取NaN3 (59 mg),加入DMSO溶解,混合溶液在160 ℃下加热. TLC监测反应进程. 检测到反应完成后,将混合溶液倒入水中,用乙酸乙酯/水体系萃取3遍,将有机层合并,然后用饱和食盐水洗涤. 得到的乙酸乙酯层用无水Na2SO4干燥,抽滤后减压蒸馏除掉溶剂,再用石油醚/乙酸乙酯的洗脱剂过柱纯化,得到171 mg白色固体,产率70%. mp.: 159~161 ℃, 1H NMR (300 MHz,CDCl3) δ7.93~ 7.95 (m, 1H),7.76~7.79 (m, 2H),7.74~7.76 (m, 2H),7.68~7.73 (m, 1H), 7.36~7.56 (m, 7H), 7.32~7.37 (m, 1H),7.16 (s, 1H); 13C NMR (75MHz , CDCl3) δ 141.0, 135.8, 132.3, 132.2, 129.8, 129.6, 129.3, 128.8, 128.7, 128.7, 128.6, 128.5, 127.9, 127.5, 123.0, 122.9, 115.9; HRMS (ESI): calcd. (M+H+) 322.133 9, found 322.134 1. 1.2.2 用同样的方法合成化合物1b~1h 1b:白色固体,产率83%. mp.: 201~204 ℃, 1H NMR (600 MHz, CDCl3) δ 8.18 (d, J = 8.4 Hz, 1H), 7.96 (d, J = 9.0 Hz, 2H), 7.78 (d, J = 7.8 Hz, 1H), 7.70 (d, J = 8.4 Hz, 2H), 7.50~7.60 (m, 1H), 7.40~7.50 (m, 1H), 7.19 (s, 1H), 7.05~7.15 (m, 4H), 3.92 (d, J= 7.8 Hz, 6H); 13C NMR (150 MHz, CDCl3) δ 160.7, 159.9, 140.9, 135.8, 131.1, 131.0, 130.8, 130.1, 128.8, 128.7, 127.8, 127.6, 127.3, 124.6, 123.1, 123.0, 115.2, 115.0, 114.3, 114.1, 114.0, 113.8, 55.5, 55.3; HRMS (ESI): calcd. (M+H+) 382.115 0, found 382.115 2. 1c:白色固体,产率79%. mp.: 180~182 ℃,1H NMR (600 MHz, CDCl3) δ 8.18 (d, J = 7.8 Hz, 1H), 7.88 (d, J = 8.4 Hz, 2H), 7.73 (d, J = 7.8 Hz, 1H), 7.66 (d, J = 7.8 Hz, 2H), 7.49~7.54 (m,1H), 7.31~7.41 (m, 5H), 7.16 (s, 1H), 2.47 (s, 3H), 2.44 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 140.8, 139.6, 138.2, 135.7, 129.7, 129.4, 129.2, 129.1, 129.1, 128.9, 128.7, 128.4, 127.4, 127.2, 122.8, 122.7, 115.4, 21.22, 21.21; HRMS (ESI): calcd. (M+H+) 350.165 2, found 350.165 4. 1d:白色固体,产率77%, mp.: 102~106 ℃, 1H NMR (600 MHz, CDCl3) δ 8.52 (d, J = 7.2 Hz, 1H), 8.43 (s, 1H), 8.15 (d, J = 7.8 Hz, 1H), 7.81 (d, J = 7.8 Hz, 1H), 7.62~7.70 (m, 2H), 7.21 (d, J = 7.2Hz, 1H); 13C NMR (100 MHz, CDCl3) δ 132.4, 129.0, 128.9, 128.8, 127.5, 125.8, 125.7, 124.0, 123.9, 122.8, 122.5, 116.1, 115.9; HRMS (ESI): calcd. (M+H+) 170.071 3, found 170.071 3. 1e:黄色固体,产率为68%, mp.: 186~190 ℃,1H NMR (600 MHz, CDCl3) δ 8.52 (s, 1H), 8.16 (d, J= 7.2 Hz, 1H), 7.98 (d, J= 6.6 Hz, 2H), 7.81 (d, J= 6.6 Hz, 1H), 7.61~7.67 (m, 2H), 7.50~7.57 (m, 3H), 7.23 (s, 1H); 13C NMR (100 MHz, CDCl3) δ 135.9, 133.2, 132.1, 129.8, 129.5, 129.4, 129.2, 129.1, 128.4, 127.5, 126.0, 123.8, 123.7, 122.2, 115.7, 115.5; HRMS (ESI): calcd. (M+H+) 246.102 6, found 246.102 6. 1f:黄色固体,产率82%, mp.: 181~184 ℃, 1H NMR (600 MHz, CDCl3) δ 9.94 (d, J= 3.0 Hz, 1H), 7.88~7.95 (m, 3H), 7.80~7.82 (m, 2H), 7.59~7.62 (m, 1H), 7.52 (s, 3H), 7.41~7.50 (m, 3H), 7.24~7.40 (m, 1H); 13C NMR (150 MHz, CDCl3) δ 188.7, 139.9, 139.8, 136.0, 134.8, 131.72, 131.67, 131.6, 131.4, 131.0, 130.1, 123.1, 129.8, 129.7, 128.8, 128.5, 128.4, 127.4, 126.4, 122.3, 118.0; HRMS (ESI): calcd. (M+H+) 384.089 8, found 384.090 2. 1g:黄色固体,产率87%, mp.: 122~126 ℃, 1H NMR (600 MHz, CDCl3) δ 9.88 (d, J = 7.2 Hz, 1H), 7.84 (d, J = 6.6 Hz, 1H), 7.73~7.81 (m, 2H), 7.61 (d, J = 6.6 Hz, 1H), 7.50 (d, J = 7.8 Hz, 1H), 7.43~7.48 (m, 1H), 7.39~7.43 (m, 1H), 7.22 (s, 1H), 3.30~3.40 (m, 2H), 1.86~2.02 (m, 2H), 1.43~1.52 (m, 2H), 1.34~1.44 (m, 2H), 0.90~0.94 (m, 3H); 13C NMR (100 MHz, d6-DMSO) δ 188.0, 152.2, 136.5, 135.7, 131.6, 131.4, 131.3, 130.0, 129.5, 129.2, 128.1, 127.4, 127.2, 126.9, 126.8, 123.7, 122.8, 122.4, 120.9, 115.8, 30.8, 30.0, 26.0, 21.7, 13.7; HRMS (ESI): calcd. (M+H+) 378.136 8, found 378.137 4. 1h:白色固体,产率为86%, mp.: 94~95 ℃, 1H NMR (600 MHz, CDCl3) δ 9.45 (d, J = 8.4 Hz, 1H), 8.17 (s, 1H), 8.05 (d, J = 7.8 Hz, 1H), 7.72 (d, J = 7.8 Hz, 1H), 7.56~7.67 (m, 2H), 7.48 (d, J = 7.8 Hz, 1H), 7.35~7.40 (m, 1H), 7.09 (s, 1H), 3.20~3.35 (m, 2H), 1.81~1.93 (m, 2H), 1.27~1.46 (m, 4H), 0.82~0.92 (m, 3H); 13C NMR (100 MHz, CDCl3) δ 186.7, 140.1, 139.3, 136.8, 134.6, 134.2, 132.4, 131.4, 130.8, 130.8, 129.3, 129.1, 127.9, 127.4, 126.6, 121.7, 115.5, 31.5, 30.8, 26.6, 22.4, 14.0; HRMS (ESI): calcd. (M+H+) 378.136 8, found 378.137 2. 1.2.3 化合物2a的合成 取1a 200 mg置于100 mL的圆底烧瓶中,以醋酸为溶剂,在110 ℃的条件下加热搅拌回流. TLC监测反应进行过程. 反应完成后,降至室温,用NaHCO3溶液调pH至中性,用乙酸乙酯/水体系萃取3遍,将乙酸乙酯层合并用饱和NaCl溶液洗涤两次. 得到的乙酸乙酯层用无水Na2SO4干燥,将溶液过滤并减压蒸去溶剂后用石油醚/乙酸乙酯洗脱剂过柱子纯化,得到淡黄色油状物200 mg,收率91%. 1H NMR (400 MHz, CDCl3) δ 8.08~8. 26 (m, 3H), 7.97 (s, 1H), 7.76 (d, J = 8.4 Hz, 1H), 7.60 (s, 1H), 7.35~7.54 (m, 7H), 7.20~7.32 (m, 3H), 2.22 (s, 3H). 13C NMR (100 MHz, CDCl3) δ 170.3, 156.4, 149.1, 139.2, 138.2, 137.7, 129.8, 128.7, 128.5, 128.2, 127.9, 127.0, 126.7, 124.8, 124.6, 116.2, 76.2, 21.2. HRMS (ESI): calcd. (M+H+) 354.141 6, found 354.413 2. 1.2.4 用相同的投料比和相同的方法合成化合物2b、2e、2g 2b:白色固体,产率为90%,mp.:143~145 ℃,1H NMR (400 MHz, CDCl3) δ 8.05~8.18 (m, 3H), 7.98 (s, 1H), 7.82 (d, J = 8.0 Hz, 1H), 7.53~7.60 (m, 2H), 7.38~7.47 (m, 3H), 7.30 (d, J = 8.0 Hz, 2H), 7.12 (d, J = 8.0 Hz, 2H), 2.42 (s, 3H), 2.29 (s, 3H), 2.24 (s, 3H). 13C NMR (100 MHz, CDCl3) δ 170.5, 156.4, 149.3, 138.4, 138.1, 137.7, 136.5, 135.3, 129.8, 129.4, 129.2, 128.0, 127.8, 126.8, 126.7, 124.7, 124.7, 115.7, 76.1, 29.7, 21.3, 21.2. HRMS (ESI): calcd. (M+H+) 414.162 7, found 414.465 1. 2e:白色油状,产率89%, 1H NMR (400 MHz, CDCl3) δ 8.14 (d, J = 7.6 Hz, 2H), 8.07 (d, J = 8.4Hz, 1H), 8.03 (s, 1H), 7.88 (d, J = 4.4, 1H), 7.65~7.69 ( m, 1H), 7.57 (m, J = 7.6 Hz, 1H), 7.46~7.51 (m, 2H), 7.37~7.42 (m, 1H), 5.77 (s, 2H), 2.18 (s, 3H). 13C NMR (100, CDCl3) δ 170.7, 154.1, 149.8, 139.1, 137.2, 130.2, 128.8, 128.5, 127.8, 127.3, 126.9, 125.6, 124.5, 116.9, 65.8, 20.9. HRMS (ESI): calcd. (M+H+) 278.110 3, found 278.317 2. 2g:白色固体,产率为90%,mp.:163~166 ℃,1H NMR (400 MHz, CDCl3) δ 8.32 (d, J = 8.0 Hz, 1H), 8.06 (d, J = 6.8Hz, 1H), 7.74 (d, J = 6.8 Hz, 1H), 7.57 (d, J = 12.0 Hz, 3H), 7.40 (s, 1H), 7.33 (s, 1H), 7.20 (s, 2H), 6.99 (s, 1H), 6.59 (s, 1H), 3.25~3.30 (m, 2H), 2.21 (s, 3H), 1.91~1.98 (m, 2H), 1.25~1.30 (m, 4H), 0.93 (t, J = 6.8 Hz, 3H). 13C NMR (100 MHz, CDCl3) δ 140.4, 138.4, 137.3, 133.8, 133.4, 131.0, 130.0, 129.7, 129.6, 128.9, 128.4, 127.9, 127.0, 123.3, 122.5, 121.4, 113.5, 45.4, 31.6, 30.6, 29.7, 26.5, 24.9, 22.4, 14.0. HRMS (ESI): calcd. (M+H+) 412.160 1, found 412.921 1. 3 结果与讨论本研究首先利用Cascade战略合成了8种具有不同取代基取代的1,2,3-三唑稠杂环化合物,分别有4种对称结构的底物和4种非对称结构的底物,并在对称结构和非对称结构中分别选取2种即对1a、1b、1e、1g四种三唑稠杂环化合物进行开环反应研究. 化合物2g在结构上与其他化合物有所不同,三唑环的4位上有一个羰基,首先用硼氢化钠将化合物1g上的羰基还原为羟基,再在醋酸为溶剂回流的条件下,进行开环反应,如图2所示. 可能的开环机理为:三唑在受热的条件下发生环裂解和氮的消去反应. 该反应的过程是,原料在乙酸回流的条件,三唑环首先开环,产生重氮化合物. 然后质子化,之后醋酸离子发生亲核进攻,脱去一分子的氮气,得到异喹啉类衍生物. 反应机理见图3. 4 结 语1,2,3-三唑稠杂环化合物及异喹啉衍生物在诸多方面均表现出非常优良的活性. 但关于1,2,3-三唑稠杂环化合物、尤其是异喹啉衍生物的合成研究报道均很少. 本实验在1,2,3-三唑稠杂环化合物的基础上,在醋酸为溶剂的条件下进行热解反应,合成了2a,2b,2e,2g 4个未见报道的异喹啉类衍生物,并探讨的开环反应机理. 提供了一种间接的合成1,3-二取代的异喹啉类衍生物的方法,为异喹啉类衍生物的反应研究奠定了基础,化合物的生物活性还有待进一步研究.