《武汉工程大学学报》 2016年4期
343-359
出版日期:2016-08-28
ISSN:1674-2869
CN:42-1779/TQ
无酶过氧化氢电化学传感器材料的研究进展
1 引 言过氧化氢(hydrogen peroxide,H2O2),水溶液俗称为双氧水,是一种应用广泛的传统无机化工产品. 1818年,由法国化学家Thenard[1]通过稀硫酸与过氧化钡反应,在实验室中首次制备出H2O2. 在轻工业[2],电子技术[3],医疗卫生[4],环境工程[5]等诸多领域都有重要应用,对H2O2的精确、快速检测在科学实践中具有着重要意义. 因此,各类H2O2传感器的研究一直是传感器领域的热门. 目前已经有多种方法被应用于H2O2的定量检测,如分光光度法[6],滴定分析法[7],荧光分析法[8],化学发光法[9]等. 但是这些方法耗时耗力,且试剂成本较高. 而电化学法[10]检测H2O2则相对简便,快捷,且可重复性高,结果可靠. 按照有无使用酶修饰电极用于构建电化学传感器,可将H2O2电化学传感器分为基于辣根过氧化物酶(Horseradish Peroxidase,HRP)的电化学传感器[11]和无酶H2O2(Nonenzymatic Hydrogen Peroxide,NHP)电化学传感器[12]两类. 其中基于HRP的电化学传感器具有选择性好、精度高等特点,但是容易受到如pH[13]、温度[14]、湿度[15]等环境因素影响,在实际使用中受到诸多限制. 因此各类NHP电化学传感器的研制日益成为该领域研究热点. NHP传感器是一种基于H2O2分子的电催化还原反应,是在相关催化材料表面直接发生[16]. 若采用普通电极直接检测H2O2,由于H2O2过电位相对较高,很容易受到尿酸、抗坏血酸等干扰物影响[17]. 研究表明,以电子媒介体来构筑NHP传感器,由于电子在电极和媒介体中传递过程加快,可有效降低过电位,提高传感器抗干扰能力[18]. 因而不同的修饰电极材料对NHP电化学传感器性能影响很大,依据文献报道,本文按照构筑NHP传感器电极材料类型不同,将NHP传感器分为金属及金属化合物基、碳基、其他材料三大类,并分别予以详细论述. 2 基于金属及金属化合物构建的NHP电化学传感器2.1 Pt、Ag等贵金属Pt、Ag等贵金属具有优越的催化活性和导电性,是最早应用于NHP电化学传感器的电极材料. 这类材料修饰电极构建的NHP电化学传感器机理研究也最为成熟. 通常采用贵金属电极材料检测H2O2,检测电位都比较高(>+0.6 V,Ag/AgCl),非常容易受到其他干扰物质影响,因而降低检测H2O2电位就显得非常重要. 2012年, Wan等[19]采用溶剂热法在低温条件下制备了形貌可控的花状Pt纳米粒子,并修饰在金盘电极上,在浓度为0.1 mol/L的磷酸盐缓冲液(PBS,pH=7.0)溶液中对H2O2进行了电化学检测. 图1为Pt修饰电极在磷酸盐缓冲液(PBS,pH=7.0)中添加不同量H2O2后的循环伏安(Cyclic Voltammetry,CV)曲线图[19],从图中可以明显看出,在不加H2O2时,CV曲线没有明显的氧化还原峰,增加H2O2的浓度,CV曲线出现明显的氧化还原峰且峰值增大,但氧化还原峰并不对称,表明H2O2在纳米Pt上催化反应是准可逆的过程. 而峰电流值与扫描速率的平方根呈线性关系,因而电极的速度控制机理是H2O2的扩散控制. 该传感器稳定性良好,在长达两个月检测中,终值仍能保持初始响应电流值的90%. 其检测电位为-0.2 V,线性范围为0.1 mmol/L ~0.9 mmol/L ,检测限为60 μmol/L . 同年, Hsiao等[20]首次报道了采用凝胶法成功制备了海胆状的纳米银粒子,以玻碳电极(glassy carbon electrode,GCE)为传感器基底在浓度为0.1 mol/L的磷酸盐缓冲液(PBS,pH=7.4)溶液中对H2O2进行检测,检测电位为-0.28 V,线性范围为0.05 mmol/L ~10.35 mmol/L,最低检测限可达10 μmol/L,灵敏度为4 705 μAmmol·L-1 cm-2. 该传感器检测范围宽,且选择性优良,对抗坏血酸和尿酸均具有良好的抗干扰性. 但是,贵金属材料制备的NHP电化学传感器依然存在一些缺点. 首先H2O2还原高度依赖于可利用的电极表面积,单体的Pt、Ag等贵金属活性面积依然有限,而当离子浓度过大时就容易引发电极表面饱和,使得传感器性能骤降[21];其次,有研究发现,Pt修饰电极在高浓度Cl-中存在失效现象[22];最后,价格也是个重要因素,在目前条件下,贵金属修饰电极材料的回收再利用还存在许多问题,因此开发使用廉价材料制备NHP电化学传感器就成为一个新的热点. 2.2 Cu、Mn、Co等过渡金属化合物Cu、Mn、Co等过渡金属化合物是常见的能源储存材料[23],在燃料电池催化剂方面也有广泛应用[24],因此很自然被用于H2O2电化学传感器的制备研究. 相比Pt、Ag等材料,Cu、Mn、Co类材料价格较为低廉,容易获取,对环境影响也较小. 目前公认的观点是,材料的比表面积越大,越有利于电子转移速率的提高,从而提升材料的电催化效果[25],因此制备出各种具有较大比表面积形貌的材料就成为该领域的一个热点,而目前围绕过渡金属化合物已经开发出各种形貌的纳米粒子. CuO是一种重要的P型半导体,较窄的带隙(1.2 eV ~1.9 eV)使其在半导体[26]、催化[27]、太阳能电池[28]、电化学传感器[29]等领域都有广泛的应用. 但是纳米CuO材料在空气和水溶液中稳定性较差,容易被氧化[30],因此有必要开发出更稳定的纳米CuO材料用于NHP电化学传感器. 通常认为H2O2在CuO修饰的电极上的催化反应是Cu(II)/Cu(I)参与的过程,而H2O2也随着催化剂的作用转变为OH-. 2012年, Wang等[31]在不添加任何表面活性剂的条件下,通过微波辅助法制备出了具有内核的球状CuO纳米颗粒,直径在2.5 μm~4 μm之间. 将CuO纳米颗粒修饰在GCE电极上,在0.1 mol/L NaOH溶液中对H2O2进行检测,检测电位为0.7 V,线性范围为0.01 mmol/L ~0.2 mmol/L,检测限为0.125 μmol/L,灵敏度为139.2 μAmmol·L-1 cm-2,该传感器稳定性良好,在计时电流法检测中连续4 000 s后电流值相比初始电流只下降了5%,具有良好的催化效果. MnO2和Co3O4也都是常用的H2O2检测材料. 其中,MnO2毒性较低,但是在酸性或强碱体系不稳定,因此常在中性溶液进行检测,通常认为H2O2在MnO2上催化机理是Mn(IV)/Mn(III),Mn(IV)/Mn(II),H2O2/O2转变的过程. 2014年, Zhang等[32]采用一步水热法制备了超薄MnO2纳米片,并以GCE为工作电极,在浓度为0.1 mol/L的PBS(pH=7.4)溶液中对H2O2进行了检测,在0.7 V检测电位下,该传感器对H2O2检测范围为0.01 mmol/L ~3.5 mmol/L,检测限为1.5 μmol/L,灵敏度为130.56 μAmmol·L-1 cm-2. Co3O4是动力电池领域常见材料,很早就被用于催化研究,且具有很好的适应性,可以被制备成多种纳米形态,如纳米棒[33]、纳米花瓣[34]、纳米微球[35]、纳米针[36]等. 2015年, Wang等[37]采用直接热解法制备了中空形状的Co3O4纳米微球(见图2),并将其修饰在GCE上用于H2O2的检测,检测液为0.1 mol/L的NaOH溶液,检测电位为0.7 V,检测范围为0.004 mmol/L ~2.2?mmol/L, 检测限为 0.105 μmol/L?,灵敏度为959.79 μAmmol·L-1 cm-2. 该传感器特点是响应速度快,稳定性好. 在电流-时间测试中,添加一定量H2O2后,可以在2 s内出现响应电流,而使用CV法测试时,连续扫描200圈,曲线图也没有出现太大的偏移. 总的来说,过渡金属化合物是一类比较优良的H2O2检测材料,在制备NHP电化学传感器具备很多得天独厚的优势,但也仍旧存在一些挑战. Cu、Mn类化合物在酸性条件下稳定性较差,在一定程度上限制了传感器的使用范围. 此外,Cu类化合物检测H2O2时,没有明显的氧化还原峰,这使得在判定H2O2在该类材料制备的NHP电化学传感器的控制反应机理存在一定的争议. 但是出于减少对贵金属材料依赖的考虑,过渡金属化合物依旧是NHP电化学传感器领域研究的热点. 2.3 金属复合材料最近几年,有越来越多的研究团队开始使用合金作为NHP电化学传感器的电极材料,由于这种材料综合了各构成金属的优点,使得不同金属间的协同作用能有效提高传感器对H2O2检测的灵敏度和选择性. 而且材料选择也较为宽泛,常见的有金属/金属基材料如Pt/Rh[38],Au/Ag[39]等;金属/金属氧化物,如Cu/CuO[40]、Co/ZnO[41]等;金属氧化物/金属氧化物,如ZnO/SnO2[42],TiO2/CuO[43]等. 2013年, Janyasupab等[44]采用组合法研究了基于Pt-M (M?=?Cu, Ni, Pd, Rh)几种金属合金化合物对H2O2的电催化性能. 经比较,发现Pt/Rh合金对H2O2电催化性能最好,检测灵敏度为839.9 μAmmol·L-1 cm-2?,即使在待检测液含有质量浓度为15?mg/L 和 85?mg/L的抗坏血酸和尿酸的情况下,依然对H2O2具有良好的选择性. 2014年, Yang等[45]采用水热法将CuO镀在Cu箔上,制备了Cu/CuO纳米复合物,并对H2O2进行检测,检测限为11 μmol/L,该传感器一大特点是可同时在0.1 mol/L的 PBS(pH=7.4)溶液和0.1 mol/L NaOH溶液中对H2O2进行检测. An等[46]在2014年采用静电纺丝法制备了ZnO/SnO2纳米棒,对H2O2也具有良好的催化效果. 可以看到,金属复合材料极大的拓展了催化H2O2类物质的选择范围,通过不同方法的结合,更好的发挥彼此的优势. 此外,合金基材料制备的NHP电化学传感器一个有力的优势是可以在不增加检测电位的情况下提高电极材料催化能力,从而减少其他物质对检测过程的干扰. 同时,金属复合材料也可以在降低贵金属使用比例的条件下加强传感器整体的检测性能. 由此,将为NHP电化学传感器的发展提供更广阔的平台. 3 基于碳基纳米复合材料构建的NHP电化学传感器碳基材料拥有很好的导电率,很早就被用于各种电化学传感器中. 但并非所有的碳基材料都具有优良的电化学性质,随着纳米技术的发展,各种新型碳材料不断被开发出来,如碳纳米管,碳纳米纤维,富勒烯,石墨烯等. 碳基材料的蓬勃发展为NHP电化学传感器材料的制备提供了丰富的选择. 3.1 碳纳米管碳纳米管具有较大的比表面积和显著地机械强度以及优良的导电导热性[47]. 因此在近些年被广泛应用于各种电化学传感器研制中. 由于其独特的一维中空管状形貌,使得碳纳米管能有效促进被分析物在电极表面的电子转移速率,提高电化学活性. 通常,碳纳米管会和金属或者金属氧化物进行复合以得到纳米结构的复合物并应用于NHP电化学传感器中. 2012年, Qiang等[48]采用原位生长法使Cu纳米粒子均匀的生长于碳纳米管侧壁,并将其修饰在GCE上用于H2O2的检测,其检测范围为?0.019 mmol/L ~8 mmol/L,检测限为0.63 μmol/L. 2015年, Lin等[49]采用水热法制备了碳纳米管/二硫化钼纳米复合物,以GCE为修饰电极,对H2O2检测限可达5 nmol/L,即使在溶液中大量存在Cl-或者其他干扰物质时,仍具备良好的选择性和较高的灵敏度. 由于二硫化钼本身也是一种性质优良的二维材料,因此和碳纳米管的结合能有效提高二者协同作用,提升催化能力. 3.2 石墨烯和氧化石墨烯石墨烯(Graphene)是由碳原子组成的只有单层原子厚度的二维晶体. 于2004年由英国曼彻斯特大学物理学家Andre Geim和Konstantin Novoselov成功从石墨中分离出,革新了以往二维材料不能在自然界单独存在的观念,两人也因此被授予2010年度诺贝尔物理学奖[50]. 石墨烯一经出世,便引起科学界广泛关注. 石墨烯是自然界已知最薄,强度最高,导电导热性能最强大的材料[51],这使得其在传感器领域应用潜力十分巨大. 2014年, Wang等[52]利用一步水热法成功制备出α-Fe2O3掺杂还原氧化石墨烯复合水凝胶,并应用于H2O2检测中,该传感器具有了较宽的检测范围0.005 mmol/L ~4.495 mmol/L,检测限为1.0 μmol/L,检测灵敏度为126.9 μAmmol·L-1 cm-2?. 由于石墨烯本身具有极大的比表面积,因此负载α-Fe2O3后,其电子转移速率会有很大提升,电极表面催化活性也进一步增强?. 2016年, Devasenathipathy等[53]首先采用恒电势法在GCE上沉积一层直径约为(70±20) nm的Cu纳米粒子,再以组氨酸为稳定剂,覆上一层还原氧化石墨烯,从而提高该电极活性面积和催化活性,并将该电极用于H2O2的检测. 其检测范围为0.001 mmol/L ~5 mmol/L,最低检测限为0.075 μmol/L,即使在多巴胺, 抗坏血酸, 尿酸, 对乙酰氨基酚, 葡萄糖和 L-半胱氨酸多种干扰物存在的情形下,依然对H2O2具有很高的选择性. 3.3 其他碳基材料其他类型碳基材料也是采用掺杂具备催化活性的纳米粒子以达到提升材料整体电催化能力的目的. 常用材料如炭黑(Carbon black),氮掺杂碳材料(N-doped carbon)等?. 2014年, Cinti等[54]通过在丝网印刷电极上沉积纳米级普鲁士蓝颗粒和炭黑复合物用来检测H2O2,通过改变炭黑与普鲁士蓝的配比,得出当炭黑占比为50%时,检测效果最好,此时检测限为0.3 μmol/L?. 而此前普鲁士蓝就已经被广泛应用于H2O2的检测,随着纳米技术的飞速发展,纳米普鲁士蓝的制备使得这种材料性能更加出众. 有研究表明,将氮原子掺杂进入碳材料后,由于其独特共轭作用,可有效提高材料电学性质[55]. 例如2016年, Zhang等[56]采用电纺技术制备了氮掺杂的碳材料也证实了这种说法,将该材料制备的NHP电化学传感器应用于H2O2检测中,对比不掺杂氮的对照组发现. 掺杂氮原子的组检测H2O2的电流响应时间更短,在2 s内即有响应?,而未掺杂组则至少需要6 s. 4 其他材料构建的NHP电化学传感器除了常见金属基和碳材料类,还有许多材料如导电高分子和多种有机无机物被用于H2O2的电化学检测. 通常也是和其他类型材料复合得到纳米结构的复合物以提高催化能力. 由于导电高分子具有独特的π-共轭结构,而且掺杂脱掺杂容易[57],非常适合应用于传感器领域. 常见导电高分子,如聚吡咯、聚苯胺、聚乙炔等都是在传感器领域应用广泛的材料. 聚苯胺储存电荷能力强,对水和氧稳定性好,导电性能出色. 但苯胺聚合过程反应快,得到产物均一性差,为解决这个问题,2016年, Yang等[58]以金/钛复合材料为基底,先后采用真空溅射和电镀法制备出了高度有序的多金属氧酸盐和聚苯胺复合的纳米柱膜层电极,并将其用于H2O2的检测. 这两种方法制备的聚苯胺复合物,形貌致密且高度有序,掺杂金属氧酸盐后,所制备的NHP传感器对H2O2检测具有极高的灵敏度,其工作电位为0.02 V,检测限为8.1 μmol/L. 同年, Li等[59]采用原位聚合法制备了石墨烯/纳米银/PVA膜电极,将其用于H2O2的检测,其独特的纳米棒结构具有很高的活性表面积,极大了增强了其催化效果,可有效的对H2O2进行选择性的检测. 而PVA膜的应用,不仅可以使离子自由穿透,还能提高传感器稳定性,防止材料在使用过程中脱落[60]. 5 展 望通过对近5年NHP电化学传感器的研究进行总结可以看出,各类传感器对H2O2都能实现一定的检测,但不同材料制备的NHP传感器差异很大. 可以预见,在一定基底材料不变情况下,制备形貌特殊,比表面积大,催化性能强的纳米材料将是未来NHP电化学传感器的研究热点. 纳米复合材料相比单一物质,能显著改善材料的电化学性能,将是构建NHP电化学传感器的重要方向. 此外,各种新型传感器的发展也是日新月异,更加轻薄、便携、灵敏的传感器日益引起广泛关注,从普遍的以GCE和ITO导电玻璃为基底的电化学传感器到新兴微流控传感器,以及新工艺的不断应用,发展快速的传感器学科依旧面临一些挑战. 诸如产品商业化的可能性,以及纳米材料的生物相容性等. 因此探索具有更低检测限、更宽检测范围、更高灵敏度、强选择性、科研和产业化完美兼容的产品就有了更多实践意义. 也为未来NHP电化学传感器的发展目标和方向提供了明晰的指引.