《武汉工程大学学报》 2017年03期
239-242
出版日期:2017-06-24
ISSN:1674-2869
CN:42-1779/TQ
新型Ruddlesden-Popper相Sr3Sn2O7陶瓷铁电体
铁电材料由于其独特的自发极化性能而引起了广泛关注,被广泛地应用于多个领域,如非易失性存储器[1-2]、太阳能电池[3]、可变电容器[4]等,但可被实际应用的高性能的铁电材料种类仍然较少[5]. 近年来人们试图通过理论计算来发现新的铁电体系[6-7],目前有许多铁电材料已经被理论预测,其中部分体系已经通过实验证实. Benedek[8]等人利用第一性原理计算预测出由两种不同八面体旋转耦合导致的混合非常规铁电性(hybrid improper ferroelectricity),其n=2的Ruddlesden-Popper相An+1BnO3n+1中的Ca3B2O7(B=Mn,Ti)中非常规铁电性来源于氧八面体的旋转和氧八面体倾斜[9]. 值得注意的是,近期(Ca,Sr)3Ti2O7单晶的成功制备证实了混合非常规铁电体的存在[10]. Liu[11]等人则通过制备Ca3(Ti,Mn)2O7陶瓷并测试材料的P-E曲线证实了其铁电性能. n=2的Ruddlesden-Popper相A3B2O7是由AO盐层和两层BO6八面体结构组成的层状结构化合物[12-13],其特殊的超晶格构型使其成为探索室温铁电材料的理想结构[14]. 由于其较高的自发极化转变能垒[15],目前关于Ruddlesden-Popper 相混合非常规铁电体的报道较少,且没有直接测量出其居里温度(Curie temperature,TC)的相关报道. Sr3Sn2O7(SSO)是近期合成出来一种具有Ruddlesden-Popper相结构的化合物[13],由于其光学性能而引起关注[16]. Mulder[15]等人预测SSO是探索新的非常规铁电体系的理想结构. 目前还没有SSO铁电性能和其TC的相关报道. 本文通过固相反应法制备SSO陶瓷,通过电滞回线和介电性能的测量来探讨材料的铁电性和TC. 1 实验部分采用传统的固相反应法制备了SSO陶瓷,将碳酸锶([wSrCO3]≥99.9%)、二氧化锡([wSnO2]≥99.9%)以SSO的化学计量比进行配料,以乙醇为球磨介质用行星球磨3 h使原料混合均匀,烘干后以5 ℃/min的升温速率在1 100 ℃预烧10 h,进行2次球磨,烘干后在224 MPa下压制成直径为10 mm、厚度为1 mm的圆片,以5 ℃/min的升温速率在1 400 ℃烧结24 h,得到单相SSO陶瓷样品. 然后将烧结成型的样品打磨至0.5 mm厚,涂Ag电极,在830 ℃烧银15 min. 采用Bruker D8 Advance型X射线衍射(X-ray diffraction,XRD)仪对样品进行物相分析;显微形貌采用日立S-4800扫描电子显微镜(scanning electron microscope,SEM)进行观察,并用X-Max50-011能谱(energy dispersive spectrometer,EDS)仪进行元素含量测量;用几何法测量样品的密度并计算样品的致密度;用武汉普斯特仪器有限公司的型号为PST-2000HL的变温介电测量系统测量不同频率(10 kHz~10 MHz)的介电温谱;采用美国Radiant Technologies的型号为 Model 09B的铁电材料测试仪,测量其电滞回线. 2 结果与讨论2.1 XRD分析图1为1 400 ℃烧结24 h的SSO陶瓷的X射线衍射图谱与SSO标准卡片NO.01-070-4390图谱. 从图1中可以看出制备的陶瓷样品是单一的正交相结构,每个峰都能与标准卡相符合. 用GSAS软件对1 400 ℃烧结24 h的样品XRD图谱进行指标化,通过计算得到SSO的晶胞参数为a=2.062 72 nm,b=0.572 49 nm,c=0.570 03 nm. 2.2 SEM与EDS分析图2(a)为1 400 ℃烧结24 h的SSO陶瓷SEM表面形貌图,从图中可以看到,样品的晶粒大小分布较均匀,尺寸约为1 μm~2 μm. 样品表面空隙较多,致密度较低(约72%),这是由于烧结温度相对较低引起的,提高烧结温度可以使致密度升高[17]. 图2(b)为图2(a)的局部放大图,从图中可以看出SSO的晶粒是由片状晶体组成的层状结构. 图3 为1 400 ℃烧结24 h的SSO陶瓷的断面SEM图及进行面扫描分析的EDS谱图. 从图3(b)中可以看出,样品中不含有样品成分外的其他元素. 表1中给出了各元素的原子百分比,SSO陶瓷断面中Sr与Sn的原子含量比值约为1.52∶1,此比例接近SSO化学式中1.5∶1. 2.3 样品的介电性能1 400 ℃烧结24 h的SSO陶瓷在不同的测试频率(10 kHz~10 MHz)下的介电常数([ε])与温度(t)的关系如图4(a)所示. 从图中可以看到在132 ℃附近有一个明显的介电峰,且不同频率下测得的介电峰位置一致,这可能是因为SSO陶瓷发生的铁电-顺电相变,而峰值对应的温度为TC. 图4 (b)是相变温度附近的局部放大图,从图中可知在不同频率下测得的TC≈132 ℃. SSO陶瓷样品在室温下的相对介电常数在7左右. 随着温度的升高,氧空位浓度增加[18-20],迁移率同时也增加,导致电导率增大,致使介电常数增加,在低频率下表现的尤其明显. 2.4 SSO陶瓷的电滞回线图5是SSO陶瓷在1 400 ℃烧结24 h的样品在室温下(约20 ℃)所测得的电极化强度(P)和电场强度(E)的关系曲线,测试频率为1 Hz. 从图5可知,虽然样品在本实验所用的92 kV/cm场强下并未达到饱和极化,但其P-E曲线已表现出典型的电滞回线,表明SSO陶瓷在室温下具有铁电性,这证明在图4中所观测到的介电峰来源于在SSO陶瓷中所发生的铁电相变. 由图5可知,在测试电场最大为92 kV/cm时,极化强度达到PS≈1.04 μC/cm2,此时不饱和电滞回线所对应的矫顽场EC≈30.3 kV/cm,剩余极化强度Pr≈0.39 μC/cm2. 3 结 语采用高温固相法合成了纯相的n=2的Ruddlesden-Popper结构SSO陶瓷,为正交相结构,其晶胞参数a=2.062 72 nm,b=0.572 49 nm,c=0.570 03 nm. 通过介电性能与电滞回线分析明确SSO为铁电体,其TC约为132 ℃,室温下相对介电常数约为7. 本实验所得到的SSO室温铁电体为理论上研究混合非常规铁电性提供了一个很好的实验案例.