《武汉工程大学学报》  2019年01期 79-83   出版日期:2019-03-23   ISSN:1674-2869   CN:42-1779/TQ
基于Python的易燃易爆品仓储风险评价系统研究


随着全面建成小康社会任务逐渐艰巨,人民生产生活中需要的化工产品和化工原料日益增多,如何管理好在生产中涉及到的化学用品,使其长期安全、可靠地保存便成了一项难题。尤其是具有易燃易爆属性的危险化学品,因为其特殊的化学属性,极易导致发生较大及以上的火灾、爆炸事故,造成很大的人员伤亡、财产损失和不良的社会影响。并且,易燃易爆品目类众多,物理特性和化学特性各异,可以涵盖从大型液化天然气储存系统到可自燃固体的仓储系统等范围,在进行仓储管理时需要根据其不同物质的特殊性质进行分类管理。因此,建立一个合理的易燃易爆品仓储风险控制体系成为一个十分重要的课题。根据相关统计结果显示,我国2016年全年共发生222起涉及化学品事故,造成199人死亡,400人受伤[1-2]。在这些事故中,有96起事故属于危化品事故,占比41.38%。在这222起涉及化学品事故中,火灾爆炸事故共99起,共导致117人死亡及168人受伤。其中,发生在仓储单位的事故共有23起,占比达到10%,可见对于易燃易爆品仓储的风险控制还需加强。我国从“重大危险源评价和宏观控制技术研究”开始对易燃易爆品仓储进行系统化研究,直至现在有了《企业安全生产标准化基本规范》(GB/T 33000-2016),其中包含重大危险源的管理内容,在此期间也产生了很多优秀的易燃易爆品仓储研究成果,危险化学品风险管控的理论体系也日趋完善。然而,在易燃易爆品仓储风险控制系统的相关程序设计和开发上,相关研究基础还较为薄弱,在进行数据分析时往往存在数据较为庞杂,计算较为繁复的问题。而且,相关的管理系统的理论研究与企业运用结合较浅、运用程度也较低。因此,需要开发一个结合具体算法的计算软件,加快数据处理和分析能力,减轻科研人员负担的同时,也能更好地与企业实际运用相结合。1 易燃易爆品仓储风险控制评价体系影响易燃易爆品火灾爆炸危险性的原因众多,结合相关文献研究,遵循科学性、合理性和实际性的要求,通过征询行业内相关专家的意见和建议,归纳出以4个一阶评价指标和14个二阶评价指标构成的易燃易爆品仓储风险控制体系,如图1所示。2 模糊综合评价法的确定本文选用的评价方法为模糊综合评价法,通过对仓储风险控制评价指标体系进行权重赋值,结合相关专家评价意见,得出具体单位系统的风险程度。2.1 评价指标权重与评价等级的确定2.1.1 评价指标权重的确定 在建立评价指标的过程中,利用二阶指标对易燃易爆品仓储单位进行风险控制评价,拟采用层次分析法来确立体系中各项指标权重 [3-4]。设一阶各个指标[Ui]的权重值为[ai],[i∈{1,2,3,4}],其中需满足[ai0],并且一阶评价指标[Ui]的权重值[ai]总和必须为1,即[i=14ai=1]。设各个二阶评价指标Uij的权重分别为aij,j为第i个一阶指标下属的二阶指标,同理必须保证[aij0],同一一阶指标下属二阶指标权重和为1,即[i=1kiaij]=1,其中[ki]代表第i个一阶指标下属的二阶指标数[5]。因此,该评价体系一阶模糊评价集为:[A=[a1,a2,a3,a4]] (1)该评价体系二阶模糊评价集为:[Ai=[ai1,ai2,?aik,?aij]] (2)2.1.2 评价指标等级的确定 为了能更好反映仓储单位易燃易爆品存储控制性能,表现出评价等级的层次性,可以更好地对实际情况进行风险评价[6]。结合多位安全工程领域和化工领域专家的意见,设定评价标准集为[P={P1,P2,P3,P4,P5}],其中,[P1]、[P2]、[P3]、[P4]、[P5]分别表示不安全、低安全、基本安全、较为安全和十分安全。2.2 建立评价矩阵评级矩阵的任务主要是对风险控制体系进行分析,主要的数学方法是模糊综合评价法[7]。结合专家审议,可以得到各个等级隶属度的评价标准集合[bij],第i个一阶指标评价矩阵[Bi][5]为: [Bi=bi1?bik?bij=b1i1b2i1?b5i1????b1ikb2ik?b5ik????b1ijb2ij?b5ij] (3)2.3 基于模糊综合评价法的易燃易爆品仓储评价2.3.1 模糊综合评价方法 该评价方法的依据为已经建立完成的易燃易爆品仓储风险控制体系,对该体系的二阶结构进行向上合成运算,得出一阶模糊评价矩阵,根据数值分布确定该评价体系的安全性。为接近现实情况,拟采用隶属度运算中的算子[F(∧,?)][5],即:[Ji=Ai?Bi=k=1i(1∧aik?bik)] (4)式(4)中:“[?]”为模糊合成算子;“[?]”表示有界积运算,为在有限制下积不超过1的乘积运算;“[∧]”表示符号两侧取小。在i=1、2、3、4时,分别代入式(4)运算得到一阶评价矩阵[5]:[J=[J1,J2,J3,J4]T] (5)最后,对一阶指标灰色模糊集合进行相关模糊综合运算,得出最终评价矩阵[5]:[S=A?J=[S1,S2,S3,S4,S5]] (6)2.3.2 评价指标权重的确定 在设定评价指标的权重集时,运用层次分析法,结合安全工程及仓储管理方面专家的意见,考虑各个方面的因素,建立出相关权重分配体系。在进行权重分配的过程中,采用的数学方法主要为德尔菲法,其结合了层次分析法和众多专家的评价意见。首先由专家给出每一个一阶评价指标和各一阶指标下属二阶指标的重要程度排序,通过建立判断矩阵,计算最大特征根和特征向量,得出每一层指标的层次单排序结果,经过一致性检验后,并根据每个参与确定指标的专家的年龄、职称、工龄等要素进行加权平均,得出最终的权重分配结果,见表1。3 基于Python的程序设计开发3.1 风险控制系统IPO和算法流程图3.1.1 IPO模式 IPO模式是在程序设计之初,帮助程序设计人员和使用者梳理程序设计思路,所设计程序或软件需要遵循的基本框架和思路的重要模式,包括:Input(输入)、Process(处理)和Output(输出)[8]。其可以很好地帮助人们了解程序任务和运算目的,易燃易爆品仓储风险控制评价系统的IPO模式如下:Input(输入):输入本次易燃易爆品仓储评价总人数和各评价指标的评价人数。Process(处理):将各指标的具体评价人数转换为该指标的相应隶属度,并通过模糊评价法计算最后结果。Output(输出):输出各一阶指标的风险控制评价等级,最终计算评价体系总的风险控制效果,并提出简短建议。通过IPO模式的简单分析,可以清楚地看出本风险控制系统主要的输入操作是输入总的评价人数和各二阶评价指标的人数;处理方式为采用模糊综合评价法对上述人数分布进行分析,最终得出总的评价结果;而输出操作则是根据上述分布和结果,对指标进行分析,从人的不安全行为、物的不安全状态和管理方面的角度提出相关整改建议。3.1.2 算法流程图 该程序编写的算法流程图如图2所示,可以更好理解数据导入和测试的大体流程[8]。3.2 实例分析3.2.1 数据输入 某易燃易爆品仓储风险评价主要采用模糊综合评价法进行,该次评价总人数为10人,具体程序操作界面如图3所示:输入评价总人数10人,如图3(a)所示;输入“人的因素”评价人数,如图3(b)所示;输入“技术设备”人数,如图3(c)所示;输入“环境条件”人数,如图3(d)所示;输入“存储物品”人数,如图3(e)所示。3.2.2 系统指标评价结果 各一阶指标和总的评价集合如表2所示,最终评价结果及建议如图4所示。从图4可以看出,该仓储单位的风险控制水平为基本安全,应当对其明显的风险项予以控制,针对隐患进行排查,限期整改。同时,各一阶评价指标的结果也有所展示,针对系统提示的安全程度,结合具体的安全生产标准化、安全生产责任制相关要求,从人的不安全行为、物的不安全状态和管理缺陷入手,结合本单位实际情况,予以整改[9-13]。3.3 Python编程分析优势Python编程实现易燃易爆品仓储风险分析的优势主要有以下3点:1)整个程序轻巧简洁。Python编程后整个运行程序十分小巧,并且保持了较快的运算速度,极大缩短了研究分析人员的数据处理时间。2)整个程序灵活多用。相较于MATLAB或其他数学分析软件,本系统基于Python开发,其应用平台更广泛,MATLAB必须在电脑端才可以处理计算,而本程序可以在Windows、iOS及Linux上广泛使用,因此应用端除电脑外,甚至可应用于平板电脑以及手机端。同时Numpy相当于MATLAB的Python版本,继承了MATLAB的强大数据处理能力[14]。3)整个程序易懂开源,相较于C、C++、Java等编程语言,Python本身的语言结构十分简洁优美,可编译性极强,本程序编写代码同样十分简洁,应用人员可以轻易读懂。因此在具体运用时,研究人员或企业可以根据自己实际情况修改程序相关部分,使其可以更好贴合于应用实际[15]。4 结 语本文以模糊综合评价法做为算法,基于Python语言和平台编写了一套针对易燃易爆品仓储的风险控制评价系统。该系统只需依次输入二阶评价指标的评价人数,即可对其风险控制程度进行自动运算。在运算结束后可以自动得出各指标及该系统整体的风险控制评价集合,并根据最大隶属度原则,给出相应的安全程度,提出相应的整改建议,结合具体易燃易爆品仓储企业的安全生产要求,即可进行有针对性的整改。该程序代码简单,运算速度极快,维护方便,易于企业和科研人员使用。并且具有模块化特征,根据相关企业和相关流程修改代码即可针对其他行业和领域,具有很强的推广型和适用性。